-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathbocd.py
190 lines (145 loc) · 6.25 KB
/
bocd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""============================================================================
Author: Gregory Gundersen
Python implementation of Bayesian online changepoint detection for a normal
model with unknown mean parameter. For algorithm details, see
Adams & MacKay 2007
"Bayesian Online Changepoint Detection"
https://arxiv.org/abs/0710.3742
For Bayesian inference details about the Gaussian, see:
Murphy 2007
"Conjugate Bayesian analysis of the Gaussian distribution"
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
This code is associated with the following blog posts:
http://gregorygundersen.com/blog/2019/08/13/bocd/
http://gregorygundersen.com/blog/2020/10/20/implementing-bocd/
============================================================================"""
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import numpy as np
from scipy.stats import norm
from scipy.special import logsumexp
# -----------------------------------------------------------------------------
def bocd(data, model, hazard):
"""Return run length posterior using Algorithm 1 in Adams & MacKay 2007.
"""
# 1. Initialize lower triangular matrix representing the posterior as
# function of time. Model parameters are initialized in the model class.
#
# When we exponentiate R at the end, exp(-inf) --> 0, which is nice for
# visualization.
#
T = len(data)
log_R = -np.inf * np.ones((T+1, T+1))
log_R[0, 0] = 0 # log 0 == 1
pmean = np.empty(T) # Model's predictive mean.
pvar = np.empty(T) # Model's predictive variance.
log_message = np.array([0]) # log 0 == 1
log_H = np.log(hazard)
log_1mH = np.log(1 - hazard)
for t in range(1, T+1):
# 2. Observe new datum.
x = data[t-1]
# Make model predictions.
pmean[t-1] = np.sum(np.exp(log_R[t-1, :t]) * model.mean_params[:t])
pvar[t-1] = np.sum(np.exp(log_R[t-1, :t]) * model.var_params[:t])
# 3. Evaluate predictive probabilities.
log_pis = model.log_pred_prob(t, x)
# 4. Calculate growth probabilities.
log_growth_probs = log_pis + log_message + log_1mH
# 5. Calculate changepoint probabilities.
log_cp_prob = logsumexp(log_pis + log_message + log_H)
# 6. Calculate evidence
new_log_joint = np.append(log_cp_prob, log_growth_probs)
# 7. Determine run length distribution.
log_R[t, :t+1] = new_log_joint
log_R[t, :t+1] -= logsumexp(new_log_joint)
# 8. Update sufficient statistics.
model.update_params(t, x)
# Pass message.
log_message = new_log_joint
R = np.exp(log_R)
return R, pmean, pvar
# -----------------------------------------------------------------------------
class GaussianUnknownMean:
def __init__(self, mean0, var0, varx):
"""Initialize model.
meanx is unknown; varx is known
p(meanx) = N(mean0, var0)
p(x) = N(meanx, varx)
"""
self.mean0 = mean0
self.var0 = var0
self.varx = varx
self.mean_params = np.array([mean0])
self.prec_params = np.array([1/var0])
def log_pred_prob(self, t, x):
"""Compute predictive probabilities \pi, i.e. the posterior predictive
for each run length hypothesis.
"""
# Posterior predictive: see eq. 40 in (Murphy 2007).
post_means = self.mean_params[:t]
post_stds = np.sqrt(self.var_params[:t])
return norm(post_means, post_stds).logpdf(x)
def update_params(self, t, x):
"""Upon observing a new datum x at time t, update all run length
hypotheses.
"""
# See eq. 19 in (Murphy 2007).
new_prec_params = self.prec_params + (1/self.varx)
self.prec_params = np.append([1/self.var0], new_prec_params)
# See eq. 24 in (Murphy 2007).
new_mean_params = (self.mean_params * self.prec_params[:-1] + \
(x / self.varx)) / new_prec_params
self.mean_params = np.append([self.mean0], new_mean_params)
@property
def var_params(self):
"""Helper function for computing the posterior variance.
"""
return 1./self.prec_params + self.varx
# -----------------------------------------------------------------------------
def generate_data(varx, mean0, var0, T, cp_prob):
"""Generate partitioned data of T observations according to constant
changepoint probability `cp_prob` with hyperpriors `mean0` and `prec0`.
"""
data = []
cps = []
meanx = mean0
for t in range(0, T):
if np.random.random() < cp_prob:
meanx = np.random.normal(mean0, var0)
cps.append(t)
data.append(np.random.normal(meanx, varx))
return data, cps
# -----------------------------------------------------------------------------
def plot_posterior(T, data, cps, R, pmean, pvar):
fig, axes = plt.subplots(2, 1, figsize=(20,10))
ax1, ax2 = axes
ax1.scatter(range(0, T), data)
ax1.plot(range(0, T), data)
ax1.set_xlim([0, T])
ax1.margins(0)
# Plot predictions.
ax1.plot(range(0, T), pmean, c='k')
_2std = 2 * np.sqrt(pvar)
ax1.plot(range(0, T), pmean - _2std, c='k', ls='--')
ax1.plot(range(0, T), pmean + _2std, c='k', ls='--')
ax2.imshow(np.rot90(R), aspect='auto', cmap='gray_r',
norm=LogNorm(vmin=0.0001, vmax=1))
ax2.set_xlim([0, T])
ax2.margins(0)
for cp in cps:
ax1.axvline(cp, c='red', ls='dotted')
ax2.axvline(cp, c='red', ls='dotted')
plt.tight_layout()
plt.show()
# -----------------------------------------------------------------------------
if __name__ == '__main__':
T = 1000 # Number of observations.
hazard = 1/100 # Constant prior on changepoint probability.
mean0 = 0 # The prior mean on the mean parameter.
var0 = 2 # The prior variance for mean parameter.
varx = 1 # The known variance of the data.
data, cps = generate_data(varx, mean0, var0, T, hazard)
model = GaussianUnknownMean(mean0, var0, varx)
R, pmean, pvar = bocd(data, model, hazard)
plot_posterior(T, data, cps, R, pmean, pvar)