-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathID3.py
264 lines (210 loc) · 9.39 KB
/
ID3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import math
class ID3Node:
def __init__(self, parent=None, attribute=None):
# Father of node
self.parent = parent
# Left child (DOES NOT have the current attribute-keyword)
self.left = None
# Right chid (DOES have the current attribute-keyword)
self.right = None
# The attribute
self.attribute = attribute
# preset value
self.preset = None
## SETTERS ##
def setPreset(self, preset):
self.preset = preset
def setLeft(self, leftChildNode):
self.left = leftChildNode
def setRight(self, rightChildNode):
self.right = rightChildNode
def setAttribute(self, attribute):
self.attribute = attribute
## GETTERS ##
def getLeft(self):
return self.left
def getRight(self):
return self.right
def getAttribute(self):
return self.attribute
def getPreset(self):
return self.preset
def __str__(self) -> str:
return str(self.attribute)
class ID3:
"""ID3 Classifier class"""
def __init__(self, keys = [], vectors = []):
self.keys = keys
self.vectors = vectors
self.gains = {}
self.desision_tree_root = None
def train(self, trainingVectorsPath):
"""Method that trains the algorithm from the training vector file provided.
trainingVectorsPath -- (str) path to the training vector file.
"""
# Flush data structures for training...
self.keys = []
self.vectors = []
self.gains = {}
self.desision_tree_root = None
# Open the training vector file:
with open(trainingVectorsPath, "r", encoding='utf-8') as trainingfile:
lines = trainingfile.readlines()
# Read the keyword line and extract the keywords:
self.keys.extend(lines[0].split(","))
self.keys.pop(-1)
lines.pop(0)
# Read the rest of the training vectors and parse them
# to a list:
for line in lines:
vector = line.strip("\n").split(",")
vector = [int(item) for item in vector]
self.vectors.append(vector)
def classify(self, revpath):
"""Main classification method that classifies a review as positive (True) or negative (False)
revpath - (str) path to the review file"""
# Initialize a dummy training vector full of 0s.
rev_vector = [0 for _ in range(len(self.keys)+1)]
# Open the review file:
with open(revpath, "r", encoding='utf-8') as revfile:
rev_text = revfile.read()
words = rev_text.split(" ")
for word in words:
cleanWord = word.strip(".,!").upper()
if cleanWord in self.keys:
# Vector-ify the review text...
# ex. review_vector[indexOf('BAD')] = 1
rev_vector[self.keys.index(cleanWord)] = 1
# Traverse the decision tree, starting from the root:
curr_node = self.desision_tree_root
while curr_node != None: # We have not reched a leaf
if curr_node.getAttribute() != None: # We have not reached a preset-leaf
# If node's keyword appears in the incoming to-be-classified
# review vector, move to the right child node
if rev_vector[self.keys.index(curr_node.getAttribute())] == 1:
curr_node = curr_node.getRight()
else:
# Else move to the left side:
curr_node = curr_node.getLeft()
else:
return curr_node.getPreset()
def buildTree(self, preset = False, stop_threshold = 0.1):
"""Builds the decision tree based on training vectors.
trainingVectors -- (list) the training vectors; list of 0-1 lists
keys -- (list) the key attributes
preset -- the preset category for classification (1 POS - 0 NEG)
"""
# build the tree...
print("Building decision tree...")
self.desision_tree_root = self.__id3(self.vectors, self.keys, preset, stop_threshold)
# calculate most valuable key via its information gain and return it
def __bestKey(self, vectors, keys):
allExamples = len(vectors)
gains = []
for col in range(len(keys)):
count_1_pos = 0 # reviews with attribute value of 1 that are possitive
count_1_neg = 0 # reviews with attribute value of 1 that are negative
count_0_pos = 0 # reviews with attribute value of 0 that are possitive
count_0_neg = 0 # reviews with attribute value of 0 that are negative
for vector in vectors:
if vector[col] == 1:
if vector[-1] == 0:
count_1_pos+= 1
else:
count_1_neg+= 1
else:
if vector[-1] == 0:
count_1_pos+= 1
else:
count_1_neg+= 1
#P(X=1)
prob_of_word = (count_1_pos + count_1_neg) / (allExamples)
#P(C=1|X=1)
pC1X1 = 0
if count_1_pos + count_1_neg != 0:
pC1X1 = float((count_1_pos) / (count_1_pos + count_1_neg))
#P(C=1|X=0)
pC1X0 = 0
if count_0_pos + count_0_neg != 0:
pC1X0 = float((count_0_pos) / (count_0_pos + count_0_neg))
#Entropies
hcX1 = self.__binEntropy(pC1X1)
hcX0 = self.__binEntropy(pC1X0)
# Calculate initial Binary Entropy H(C)
count_pos = count_0_pos + count_1_pos # count of all positive reviews
hc = self.__binEntropy(count_pos / len(vectors))
gains.append(hc - ((prob_of_word * hcX1) + ((1 - prob_of_word) * hcX0)))
max_gain = max(gains)
return keys[gains.index(max_gain)] # to be used in buildTree
def __binEntropy(self, prob):
if prob == 0 or prob == 1:
return 0
else:
return - (prob * math.log2(prob)) - ((1-prob)*math.log2(1-prob))
def __id3(self, trainingVectors, keys, preset, stop_threshold):
"""(RECURSIVE USAGE) The main ID3 algorithm.
trainingVectors -- (list) the training vectors; list of 0-1 lists
keys -- (list) the key attributes
preset -- the preset category for classification (1 POS - 0 NEG)
"""
# Create new node to add to the decision tree.
node = ID3Node()
# If there are no training vectors left, return
# a dummy node with no keyword attribute and set
# its default category.
if trainingVectors == []:
node.setPreset(preset)
return node
# Count how many of the training vectors are
# positive and negative.
count_pos = 0
count_neg = 0
for item in trainingVectors:
if item[-1] == 1:
count_pos += 1
else:
count_neg += 1
# If there are no keys left, return the
# node with the most common category that
# appears in the training vectors.
if keys == []:
if count_pos >= count_neg:
node.setPreset(True)
else:
node.setPreset(False)
return node
# Check if the majority of the training vectors is positive
# with respect to the threshold value.
if (count_pos>0 and (count_neg/count_pos)<= stop_threshold): # 95% of training data are possitive. Stop to avoid overfitting
node.setPreset(True)
return node
# Check if the majority of the training vectors is negative
# with respect to the threshold value.
if (count_neg>0 and (count_pos/count_neg)<= stop_threshold): # 95% of training data are negative. Stop to avoid overfitting
node.setPreset(False)
return node
# Find the keyword attribute that with the highest
# information gain.
best_key = self.__bestKey(trainingVectors,keys)
# Locate its index in the keywords data structure
best_index = keys.index(best_key)
# Set the keyword attribute of the node to the
# best contributing keyword (found earlier)
node.setAttribute(best_key)
# Split the training vectors to those containing the
# best-contributing keyword attribute and those who
# don't:
with_key = []
without_key = []
for item in trainingVectors:
if item[best_index] == 1:
with_key.append(item[:best_index]+item[best_index+1:]) # the attribute selected in this step is no longer useful in the next steps
else:
without_key.append(item[:best_index]+item[best_index+1:])
#since keys can either exist or not exist in a review, we only need to make 2 children
#we pass the key list without the key we used in this step (best key)
node.setLeft(self.__id3(without_key, keys[:best_index]+keys[best_index+1:], preset, stop_threshold))
node.setRight(self.__id3(with_key, keys[:best_index]+keys[best_index+1:], preset, stop_threshold))
return node
def __str__(self):
return "id3"