-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_grammarly.py
134 lines (115 loc) · 5.58 KB
/
train_grammarly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import argparse
from models.recursive_models.recursive_eduembed import TreeRecursiveEduNN
from models.recursive_models.recursive_model import TreeRecursiveNN
from models.recursive_models.gcdc_model import GCDCModel
from models.recursive_models.ensemble_model import EnsembleModel
from models.recursive_models.recursive_tree_only import TreeRecursiveTreeOnlyNN
from datasets.tree_dataset import TreeDataset
from datasets.tree_dataset_ensemble import TreeDatasetEnsemble
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader
from torch.optim import Adam
from glove.construct_glove import *
from train_helpers import *
import sys
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--num_epochs', type=int, default=2)
parser.add_argument('--embed_dim', type=int, default=50)
parser.add_argument('--glove_dim', type=int, default=300)
parser.add_argument('--run_id', type=int, default=1)
parser.add_argument('--hidden_dim', type=int, default=100)
args = parser.parse_args()
train_dataset_names = ['Clinton_train', 'Enron_train', 'Yahoo_train', 'Yelp_train']
test_dataset_names = ['Clinton_test', 'Enron_test', 'Yahoo_test', 'Yelp_test']
rec_model_names = ['rec_tree_only', 'rec_tree_nuc', 'rec_tree_rels', 'rec_tree_all']
ens_model_names = ['ens_tree_only', 'ens_tree_nuc', 'ens_tree_rels']
parseq_model_name = "parseq"
train_dataset_folder = "datasets/gcdc_trees/"
test_dataset_folder = "datasets/gcdc_trees/"
glove_path = "glove"
device = "cpu"
embed_dim = args.embed_dim
glove_dim = args.glove_dim
hidden_dim = args.hidden_dim
num_epochs = args.num_epochs
selected_model = args.model_name
run_id = args.run_id
lr=args.lr
loss=CrossEntropyLoss()
# Set up the dataset
print("Loading Glove embeddings")
glove, _, _ = load_glove(glove_path)
print("Constructing the datasets")
test_dataset_loaders = {}
if selected_model in rec_model_names:
train_data_loader = DataLoader(TreeDataset(train_dataset_folder, train_dataset_names),
collate_fn=lambda x: x,
shuffle=True)
for test_name in test_dataset_names:
test_dataset_loaders[test_name] = DataLoader(TreeDataset(test_dataset_folder, [test_name]),
collate_fn=lambda x: x)
if selected_model == 'rec_tree_only':
model = TreeRecursiveTreeOnlyNN(hidden_dim)
elif selected_model == 'rec_tree_nuc':
model = TreeRecursiveNN(embed_dict_nuclearity, embed_dim, hidden_dim, use_relations=False)
elif selected_model == 'rec_tree_rels':
model = TreeRecursiveNN(embed_dict, embed_dim, hidden_dim, use_relations=True)
else:
model = TreeRecursiveEduNN(embed_dict, glove, embed_dim, glove_dim, hidden_dim, use_relations=True)
elif selected_model in ens_model_names:
train_data_loader = DataLoader(TreeDatasetEnsemble(train_dataset_folder, train_dataset_names),
collate_fn=lambda x: x,
shuffle=True)
for test_name in test_dataset_names:
test_dataset_loaders[test_name] = DataLoader(TreeDatasetEnsemble(test_dataset_folder, [test_name]),
collate_fn=lambda x: x)
if selected_model == 'ens_tree_only':
recursive_model = TreeRecursiveTreeOnlyNN(hidden_dim)
elif selected_model == 'ens_tree_nuc':
recursive_model = TreeRecursiveNN(embed_dict_nuclearity, embed_dim, hidden_dim, use_relations=False)
else:
recursive_model = TreeRecursiveNN(embed_dict, embed_dim, hidden_dim, use_relations=True)
sem_model = GCDCModel(embed_dict, glove, embed_dim, glove_dim, hidden_dim).to(device)
model = EnsembleModel(recursive_model, sem_model, hidden_dim).to(device)
elif selected_model == parseq_model_name:
train_data_loader = DataLoader(TreeDatasetEnsemble(train_dataset_folder, train_dataset_names),
collate_fn=lambda x: x,
shuffle=True)
for test_name in test_dataset_names:
test_dataset_loaders[test_name] = DataLoader(TreeDatasetEnsemble(test_dataset_folder, [test_name]),
collate_fn=lambda x: x)
model = GCDCModel(embed_dict, glove, embed_dim, glove_dim, hidden_dim).to(device)
else:
raise Exception("Unknown model name")
optimizer = Adam(model.parameters(), lr=lr)
for epoch in range(num_epochs):
model = model.train()
print("***************************")
print("EPOCH NUM %d" % epoch)
cost_acc = 0
for i, sample in enumerate(train_data_loader):
cost_acc += train_step(sample, loss, optimizer, model)
if (i % 100 == 0):
print(cost_acc)
print(cost_acc)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': cost_acc
}, "model_saves/" + selected_model + "_run_" + str(run_id))
model = model.eval()
for dataset_name, test_data_loader in test_dataset_loaders.items():
acc, f1 = find_accuracy_F1(model, test_data_loader)
print("Accuracy, F1 on ", dataset_name, " are ", acc, f1)
for label in range(3):
recall = find_recall(model, test_data_loader, label)
precision = find_precision(model, test_data_loader, label)
if (precision != None):
f1 = 2 * (precision * recall) / (precision + recall)
print("F1 for label " + str(label) + " is " + str(f1))
else:
print("F1 for label " + str(label) + " is NA")