-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstrassen.rs
221 lines (188 loc) · 5.41 KB
/
strassen.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use nalgebra::{
DMatrix,
DMatrixSlice
};
use num_integer::Integer;
type M = DMatrix<isize>;
type MSlice<'a> = DMatrixSlice<'a, isize>;
/// to_slice converts DMatrix to DMatrixSlice
fn to_slice(m: &M) -> MSlice {
m.slice((0, 0), (m.nrows(), m.ncols()))
}
/// Quadrants
///
/// Input: reference to matrix slice x
/// Output: tuple of quadrants from x
/// Assumption: x is square matrix
///
/// ================================================================================================
///
/// x_rows, x_cols = x matrix shape
/// midpoint_row, midpoint_col = floored halves of x_rows and x_cols
///
/// return result: tuple of matrix quadrants
fn quadrants<'a>(x: &'a MSlice<'a>) -> (MSlice<'a>, MSlice<'a>, MSlice<'a>, MSlice<'a>) {
let divisor: usize = 2;
let midpoint_row = x.nrows().div_floor(&divisor);
let midpoint_cols = x.ncols().div_floor(&divisor);
let q1 = x.slice(
(0, 0),
(midpoint_row, midpoint_cols)
);
let q2 = x.slice(
(0, midpoint_cols),
(midpoint_row, x.ncols() - midpoint_cols)
);
let q3 = x.slice(
(midpoint_row, 0),
(x.nrows() - midpoint_row, midpoint_cols)
);
let q4 = x.slice(
(midpoint_row, midpoint_cols),
(x.nrows() - midpoint_row, x.ncols() - midpoint_cols)
);
(q1, q2, q3, q4)
}
/// Combine Quadrants
///
/// Input: matrix quadrants q1..q4
/// Output: matrix of combined quadrants
/// Assumption: quadrants are square matrices
///
/// ================================================================================================
///
/// quadrants = (q1..q4)
/// n_rows = q1_rows + q3_rows
/// n_cols = q1_cols + q2_cols
///
/// data = []
/// loop quadrants
/// loop quadrants values
/// insert value into data
///
/// return result: matrix of size n_rows x n_cols with data
fn combine_quadrants(q1: M, q2: M, q3: M, q4: M, ) -> M {
let quadrants = [[&q1, &q3], [&q2, &q4]];
let n_rows = &q1.nrows() + &q3.nrows();
let n_cols = &q1.ncols() + &q2.ncols();
let mut data = vec![];
for halve in quadrants.iter() {
let (top, bottom) = (halve[0], halve[1]);
let n_cols = top.ncols();
for col in 0..n_cols {
for v in top.column(col).iter() {
data.push(*v);
}
for v in bottom.column(col).iter() {
data.push(*v);
}
}
}
DMatrix::from_vec(n_rows, n_cols, data)
}
/// Strassen implementation
fn strassen(x: MSlice, y: MSlice) -> M {
if x.len() == 1 {
return x * y;
}
let (a, b, c, d) = quadrants(&x);
let (e, f, g, h) = quadrants(&y);
let p1_y: M = f - h;
let p1 = strassen(a, to_slice(&p1_y));
let p2_x: M = a + b;
let p2 = strassen(to_slice(&p2_x), h);
let p3_x: M = c + d;
let p3 = strassen(to_slice(&p3_x), e);
let p4_y: M = g - e;
let p4 = strassen(d, to_slice(&p4_y));
let p5_x: M = a + d;
let p5_y: M = e + h;
let p5 = strassen(to_slice(&p5_x), to_slice(&p5_y));
let p6_x: M = b - d;
let p6_y: M = g + h;
let p6 = strassen(to_slice(&p6_x), to_slice(&p6_y));
let p7_x: M = a - c;
let p7_y: M = e + f;
let p7 = strassen(to_slice(&p7_x), to_slice(&p7_y));
let q1: M = &p5 + &p4 - &p2 + &p6;
let q2: M = &p1 + &p2;
let q3: M = &p3 + &p4;
let q4: M = &p1 + &p5 - &p3 - &p7;
combine_quadrants(q1, q2, q3, q4)
}
/// Strassen Matrix Multiplication
///
/// Input: n-vector vectors x and y
/// Output: n-vector vector product of x and y
/// Assumption: x and y are equal squares
///
/// =================================================================================================
///
/// todo - explain what is not simply explained
pub fn multiply(x: M, y: M) -> M {
strassen(to_slice(&x), to_slice(&y))
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_quadrants() {
let x = DMatrix::from_row_slice(4, 4, &[
10, 9, 4, 3,
8, 3, 4, 1,
93, 1, 9, 3,
2, 2, 7, 6
]);
let expectation: Vec<DMatrix<isize>> = vec![
DMatrix::from_row_slice(2, 2, &[
10, 9,
8, 3
]),
DMatrix::from_row_slice(2, 2, &[
4, 3,
4, 1
]),
DMatrix::from_row_slice(2, 2, &[
93, 1,
2, 2
]),
DMatrix::from_row_slice(2, 2, &[
9, 3,
7, 6
])
];
let x_slice = to_slice(&x);
let (q1, q2, q3, q4) = quadrants(&x_slice);
assert_eq!(q1, expectation[0]);
assert_eq!(q2, expectation[1]);
assert_eq!(q3, expectation[2]);
assert_eq!(q4, expectation[3]);
}
#[test]
fn test_combine_quadrants() {
let q1 = DMatrix::from_row_slice(2, 2, &[
10, 9,
8, 3
]);
let q2 = DMatrix::from_row_slice(2, 2, &[
4, 3,
4, 1
]);
let q3 = DMatrix::from_row_slice(2, 2, &[
93, 1,
2, 2
]);
let q4 = DMatrix::from_row_slice(2, 2, &[
9, 3,
7, 6
]);
let expectation = DMatrix::from_row_slice(4, 4, &[
10, 9, 4, 3,
8, 3, 4, 1,
93, 1, 9, 3,
2, 2, 7, 6
]);
let result = combine_quadrants(q1, q2, q3, q4);
assert_eq!(result, expectation);
}
}