From a300020114750969f00b989daa1b15c4bfd6eb98 Mon Sep 17 00:00:00 2001 From: acp29 Date: Tue, 2 Apr 2024 16:18:04 +0100 Subject: [PATCH] update manual --- docs/function/boot.html | 192 ++++++++++++++++---------- docs/function/boot1way.html | 4 +- docs/function/bootbayes.html | 6 +- docs/function/bootci.html | 46 +++--- docs/function/bootclust.html | 45 +++--- docs/function/bootknife.html | 48 +++---- docs/function/bootlm.html | 154 ++++++++++----------- docs/function/bootmode.html | 4 +- docs/function/bootstrp.html | 104 +++++++------- docs/function/bootwild.html | 4 +- docs/function/images/boot1way_701.png | Bin 24186 -> 24422 bytes docs/function/images/boot1way_801.png | Bin 24791 -> 25157 bytes docs/function/randtest2.html | 20 +-- docs/function/sampszcalc.html | 6 +- 14 files changed, 342 insertions(+), 291 deletions(-) diff --git a/docs/function/boot.html b/docs/function/boot.html index b72ec044..2c667a86 100644 --- a/docs/function/boot.html +++ b/docs/function/boot.html @@ -116,17 +116,23 @@

Demonstration 1

Produces the following output

ans =
 
- Columns 1 through 10:
+                                     Columns 1 through 8:
 
-            2            2            3            3            1            1            2            2            3            2
-            2            3            3            2            1            1            1            2            3            3
-            3            2            3            3            2            2            2            1            3            3
+                                                2            2            3            3            1            1            2            2
+                                                2            3            3            2            1            1            1            2
+                                                3            2            3            3            2            2            2            1
 
- Columns 11 through 20:
+                                     Columns 9 through 16:
 
-            2            3            3            1            3            2            1            2            3            1
-            3            1            1            2            3            3            2            1            1            2
-            1            1            1            1            2            1            2            1            3            1
+ 3 2 2 3 3 1 3 2 + 3 3 3 1 1 2 3 3 + 3 3 1 1 1 1 2 1 + + Columns 17 through 20: + + 1 2 3 1 + 2 1 1 2 + 2 1 3 1

Demonstration 2

@@ -139,17 +145,23 @@

Demonstration 2

Produces the following output

ans =
 
- Columns 1 through 10:
+                                     Columns 1 through 8:
+
+                                                3            3            2            3            1            2            2            1
+                                                2            1            1            2            1            1            3            1
+                                                2            3            1            3            3            2            3            1
+
+                                     Columns 9 through 16:
 
-            3            3            2            3            1            2            2            1            1            3
-            2            1            1            2            1            1            3            1            1            3
-            2            3            1            3            3            2            3            1            1            3
+                                                1            3            3            1            2            3            2            2
+                                                1            3            3            2            3            1            1            3
+                                                1            3            3            1            3            3            1            2
 
- Columns 11 through 20:
+                                     Columns 17 through 20:
 
-            3            1            2            3            2            2            1            2            2            3
-            3            2            3            1            1            3            1            2            2            2
-            3            1            3            3            1            2            1            2            2            2
+ 1 2 2 3 + 1 2 2 2 + 1 2 2 2

Demonstration 3

@@ -164,45 +176,63 @@

Demonstration 3

Produces the following output

ans =
 
- Columns 1 through 10:
+                                     Columns 1 through 8:
+
+                                                3            3            3            3            1            2            3            3
+                                                3            1            2            2            3            1            3            1
+                                                3            2            3            1            3            1            1            1
+
+                                     Columns 9 through 16:
+
+                                                1            1            2            2            1            2            2            2
+                                                2            2            3            3            2            3            3            3
+                                                3            1            2            3            2            1            2            2
+
+                                     Columns 17 through 20:
 
-            3            3            3            3            1            2            3            3            1            1
-            3            1            2            2            3            1            3            1            2            2
-            3            2            3            1            3            1            1            1            3            1
+                                                1            2            1            1
+                                                3            1            1            2
+                                                2            1            2            1
 
- Columns 11 through 20:
+                                    ans =
 
-            2            2            1            2            2            2            1            2            1            1
-            3            3            2            3            3            3            3            1            1            2
-            2            3            2            1            2            2            2            1            2            1
+                                     Columns 1 through 8:
 
-ans =
+                                                3            3            3            3            1            2            3            3
+                                                3            1            2            2            3            1            3            1
+                                                3            2            3            1            3            1            1            1
 
- Columns 1 through 10:
+                                     Columns 9 through 16:
 
-            3            3            3            3            1            2            3            3            1            1
-            3            1            2            2            3            1            3            1            2            2
-            3            2            3            1            3            1            1            1            3            1
+                                                1            1            2            2            1            2            2            2
+                                                2            2            3            3            2            3            3            3
+                                                3            1            2            3            2            1            2            2
 
- Columns 11 through 20:
+                                     Columns 17 through 20:
 
-            2            2            1            2            2            2            1            2            1            1
-            3            3            2            3            3            3            3            1            1            2
-            2            3            2            1            2            2            2            1            2            1
+                                                1            2            1            1
+                                                3            1            1            2
+                                                2            1            2            1
 
-ans =
+                                    ans =
 
- Columns 1 through 10:
+                                     Columns 1 through 8:
 
-            3            2            2            3            2            3            1            2            2            3
-            1            3            1            1            2            3            3            3            1            2
-            1            3            3            1            1            1            2            3            2            2
+                                                3            2            2            3            2            3            1            2
+                                                1            3            1            1            2            3            3            3
+                                                1            3            3            1            1            1            2            3
 
- Columns 11 through 20:
+                                     Columns 9 through 16:
 
-            1            2            3            1            2            3            2            3            2            3
-            1            1            2            1            3            1            1            3            3            2
-            2            1            2            3            3            1            1            2            2            1
+ 2 3 1 2 3 1 2 3 + 1 2 1 1 2 1 3 1 + 2 2 2 1 2 3 3 1 + + Columns 17 through 20: + + 2 3 2 3 + 1 3 3 2 + 1 2 2 1

Demonstration 4

@@ -217,15 +247,31 @@

Demonstration 4

Produces the following output

ans =
 
-           44           23           23           36           44           23           44           36           36           23
-           36           23           36           23           44           36           36           23           44           44
-           36           36           23           44           23           44           23           36           44           44
+                                     Columns 1 through 8:
+
+                                               44           23           23           36           44           23           44           36
+                                               36           23           36           23           44           36           36           23
+                                               36           36           23           44           23           44           23           36
+
+                                     Columns 9 and 10:
+
+                                               36           23
+                                               44           44
+                                               44           44
+
+                                    ans =
+
+                                     Columns 1 through 8:
+
+                                               23           23           23           36           23           23           23           36
+                                               36           23           36           23           23           36           36           23
+                                               36           36           23           23           23           23           23           36
 
-ans =
+                                     Columns 9 and 10:
 
-           23           23           23           36           23           23           23           36           36           23
-           36           23           36           23           23           36           36           23           23           23
-           36           36           23           23           23           23           23           36           23           23
+ 36 23 + 23 23 + 23 23

Demonstration 5

@@ -240,30 +286,30 @@

Demonstration 5

Produces the following output

ans =
 
-            4
-            2
-            3
-            5
-            4
-            6
-
-ans =
-
-            4
-            3
-            4
-            6
-            6
-            2
-
-ans =
-
-            5
-            6
-            3
-            4
-            1
-            6
+ 4 + 2 + 3 + 5 + 4 + 6 + + ans = + + 4 + 3 + 4 + 6 + 6 + 2 + + ans = + + 5 + 6 + 3 + 4 + 1 + 6

Package: statistics-resampling

diff --git a/docs/function/boot1way.html b/docs/function/boot1way.html index c3a9e434..0b818776 100644 --- a/docs/function/boot1way.html +++ b/docs/function/boot1way.html @@ -529,7 +529,7 @@

Demonstration 7

----------------------------------------------------------------------------- | Comparison | Test # | Ref # | Difference | t | p | |------------|------------|------------|------------|------------|----------| -| 1 | 2 | 1 | +0.2663 | +0.72 | .405 | +| 1 | 2 | 1 | +0.2869 | +0.57 | .558 | ----------------------------------------------------------------------------- | GROUP # | GROUP label | N | @@ -574,7 +574,7 @@

Demonstration 8

----------------------------------------------------------------------------- | Comparison | Test # | Ref # | Difference | t | p | |------------|------------|------------|------------|------------|----------| -| 1 | 2 | 1 | +0.8165 | +1.00 | .242 | +| 1 | 2 | 1 | -0.6293 | -1.71 | .035 |* ----------------------------------------------------------------------------- | GROUP # | GROUP label | N | diff --git a/docs/function/bootbayes.html b/docs/function/bootbayes.html index e4283df2..f27b47cd 100644 --- a/docs/function/bootbayes.html +++ b/docs/function/bootbayes.html @@ -191,7 +191,7 @@

Demonstration 1

Posterior Statistics: original bias median stdev CI_lower CI_upper - +184.5 -0.04557 +184.4 1.361 +181.8 +187.2 + +184.5 -0.02210 +184.5 1.240 +182.1 +186.9

Demonstration 2

@@ -228,8 +228,8 @@

Demonstration 2

Posterior Statistics: original bias median stdev CI_lower CI_upper - +175.5 +0.02706 +175.5 2.411 +171.1 +180.4 - +0.1904 -0.001895 +0.1888 0.08070 +0.03636 +0.3424 + +175.5 +0.03532 +175.5 2.384 +171.1 +180.3 + +0.1904 -0.001074 +0.1909 0.07912 +0.04160 +0.3442

Package: statistics-resampling

diff --git a/docs/function/bootci.html b/docs/function/bootci.html index 057f6101..d9b4fcfb 100644 --- a/docs/function/bootci.html +++ b/docs/function/bootci.html @@ -184,8 +184,8 @@

Demonstration 1

Produces the following output

ci =
 
-       23.616
-       34.358
+ 23.616 + 34.358

Demonstration 2

@@ -204,8 +204,8 @@

Demonstration 2

Produces the following output

ci =
 
-       23.975
-       34.269
+ 23.975 + 34.269

Demonstration 3

@@ -225,8 +225,8 @@

Demonstration 3

Produces the following output

ci =
 
-        25.04
-       36.477
+ 25.04 + 36.477

Demonstration 4

@@ -243,8 +243,8 @@

Demonstration 4

Produces the following output

ci =
 
-       96.629
-       235.91
+ 96.629 + 235.91

Demonstration 5

@@ -261,8 +261,8 @@

Demonstration 5

Produces the following output

ci =
 
-       117.01
-       260.73
+ 117.01 + 260.73

Demonstration 6

@@ -282,8 +282,8 @@

Demonstration 6

Produces the following output

ci =
 
-       108.55
-       297.71
+ 108.55 + 297.71

Demonstration 7

@@ -303,8 +303,8 @@

Demonstration 7

Produces the following output

ci =
 
-       111.53
-       268.13
+ 111.53 + 268.13

Demonstration 8

@@ -325,8 +325,8 @@

Demonstration 8

Produces the following output

ci =
 
-      0.50501
-      0.86333
+ 0.50501 + 0.86333

Demonstration 9

@@ -431,13 +431,13 @@

Demonstration 9

Produces the following output

ans =
 
-       -16.69      -20.555      -12.325
-      -11.721      -15.104       -7.907
-      -8.0606      -11.244      -4.3564
-      0.10476    -0.081023      0.28225
-     0.010336   -0.0032993     0.022647
-      0.06452     0.033083     0.095608
-    0.0016638   0.00017173    0.0031554
+ -16.69 -20.555 -12.325 + -11.721 -15.104 -7.907 + -8.0606 -11.244 -4.3564 + 0.10476 -0.081023 0.28225 + 0.010336 -0.0032993 0.022647 + 0.06452 0.033083 0.095608 + 0.0016638 0.00017173 0.0031554

Demonstration 10

diff --git a/docs/function/bootclust.html b/docs/function/bootclust.html index 841e2a8a..3eeea407 100644 --- a/docs/function/bootclust.html +++ b/docs/function/bootclust.html @@ -114,10 +114,11 @@

bootclust

so that bootclust results are reproducible. 'bootclust (DATA, NBOOT, BOOTFUN, ALPHA, ..., LOO, SEED, NPROC)' also - sets the number of parallel processes to use for function evaluations - during bootstrap and jackknife computations on multicore machines. This - feature requires the Parallel package (in Octave), or the Parallel - Computing Toolbox (in Matlab). + sets the number of parallel processes to use for jackknife computations + and non-vectorized function evaluations during bootstrap and on multicore + machines. This feature requires the Parallel package (in Octave), or the + Parallel Computing Toolbox (in Matlab). This option is ignored during + bootstrap function evaluations when BOOTFUN is vectorized. 'STATS = bootclust (...)' returns a structure with the following fields (defined above): original, bias, std_error, CI_lower, CI_upper. @@ -125,6 +126,10 @@

bootclust

'[STATS, BOOTSTAT] = bootclust (...)' returns BOOTSTAT, a vector or matrix of bootstrap statistics calculated over the bootstrap resamples. + '[STATS, BOOTSTAT, BOOTDATA] = bootclust (...)' returns BOOTDATA, a 1-by- + NBOOT cell array of datasets generated by cluster or block bootstrap + resampling. + REQUIREMENTS: The function file boot.m (or better boot.mex) and bootcdf, which are distributed with the statistics-resampling package. @@ -184,11 +189,11 @@

Demonstration 1

Number of resamples: 1999 Number of data rows in each block: 1 Confidence interval (CI) type: Expanded bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.2%, 97.6%) + Nominal coverage (and the percentiles used): 95% (1.1%, 97.2%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 +4.263e-14 +2.612 +23.34 +34.53 + +29.65 -3.197e-14 +2.564 +23.43 +34.48

Demonstration 2

@@ -214,11 +219,11 @@

Demonstration 2

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Expanded bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.1%, 98.8%) + Nominal coverage (and the percentiles used): 95% (1.1%, 98.7%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 -0.03672 +2.929 +22.97 +36.10 + +29.65 -0.02999 +2.920 +22.64 +35.86

Demonstration 3

@@ -247,7 +252,7 @@

Demonstration 3

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.542 +40.80 +99.57 +234.1 + +171.5 -6.379 +42.98 +96.61 +239.1

Demonstration 4

@@ -277,7 +282,7 @@

Demonstration 4

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -8.635 +33.19 +106.3 +215.6 + +171.5 -9.524 +33.03 +106.0 +215.4

Demonstration 5

@@ -301,11 +306,11 @@

Demonstration 5

Number of resamples: 1999 Number of data rows in each block: 1 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 90% (11.3%, 98.5%) + Nominal coverage (and the percentiles used): 90% (12.6%, 98.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.818 +42.53 +112.3 +260.3 + +171.5 -6.608 +42.24 +117.3 +267.8

Demonstration 6

@@ -330,11 +335,11 @@

Demonstration 6

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 90% (12.9%, 98.7%) + Nominal coverage (and the percentiles used): 90% (13.7%, 98.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -9.466 +33.77 +122.7 +231.9 + +171.5 -9.512 +33.09 +125.0 +231.3

Demonstration 7

@@ -361,8 +366,8 @@

Demonstration 7

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.04669 +0.008816 +0.2270 -0.2937 +0.4346 - -0.1589 +0.01375 +0.1653 -0.3877 +0.1029 + +0.3243 +0.02218 +0.2915 -0.1682 +0.7906 + -0.1858 -0.01006 +0.2986 -0.6206 +0.3650

Demonstration 8

@@ -389,8 +394,8 @@

Demonstration 8

Bootstrap Statistics: original bias std_error CI_lower CI_upper - -0.09369 +0.03264 +0.2246 -0.3718 +0.3783 - +0.4382 -0.03756 +0.2405 -0.01282 +0.7747 + -0.5288 -0.01041 +0.09605 -0.6767 -0.3641 + +0.8124 +0.04063 +0.3114 +0.2805 +1.305

Demonstration 9

@@ -417,11 +422,11 @@

Demonstration 9

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.6%, 96.5%) + Nominal coverage (and the percentiles used): 95% (1.8%, 96.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.7764 -0.02375 +0.1439 +0.3882 +0.9904 + +0.7764 -0.02391 +0.1409 +0.4128 +0.9919

Demonstration 10

diff --git a/docs/function/bootknife.html b/docs/function/bootknife.html index 6c0eaab6..77570021 100644 --- a/docs/function/bootknife.html +++ b/docs/function/bootknife.html @@ -223,11 +223,11 @@

Demonstration 1

Number of resamples (outer): 1999 Number of resamples (inner): 0 Confidence interval (CI) type: Expanded bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.4%, 97.3%) + Nominal coverage (and the percentiles used): 95% (1.3%, 97.2%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 +5.684e-14 +2.590 +23.58 +34.56 + +29.65 -2.842e-14 +2.695 +23.35 +34.56

Demonstration 2

@@ -253,11 +253,11 @@

Demonstration 2

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile - Nominal coverage (and the percentiles used): 95% (1.1%, 97.4%) + Nominal coverage (and the percentiles used): 95% (0.9%, 98.1%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 +7.461e-14 +2.787 +23.35 +34.96 + +29.65 -1.208e-13 +2.797 +22.95 +35.05

Demonstration 3

@@ -284,11 +284,11 @@

Demonstration 3

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile - Nominal coverage (and the percentiles used): 95% (1.8%, 97.7%) + Nominal coverage (and the percentiles used): 95% (3.0%, 97.7%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +30.86 -0.04099 +3.068 +24.49 +36.88 + +30.86 -0.006010 +2.849 +25.06 +36.65

Demonstration 4

@@ -317,7 +317,7 @@

Demonstration 4

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.713 +42.61 +95.98 +235.5 + +171.5 -6.829 +43.16 +95.97 +237.3

Demonstration 5

@@ -341,11 +341,11 @@

Demonstration 5

Number of resamples (outer): 1999 Number of resamples (inner): 0 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 90% (12.8%, 98.8%) + Nominal coverage (and the percentiles used): 90% (13.1%, 98.9%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.976 +44.15 +113.9 +268.0 + +171.5 -7.292 +43.98 +114.3 +272.9

Demonstration 6

@@ -372,11 +372,11 @@

Demonstration 6

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile (equal-tailed) - Nominal coverage (and the percentiles used): 90% (2.8%, 97.2%) + Nominal coverage (and the percentiles used): 90% (2.3%, 97.7%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -7.026 +42.78 +87.77 +246.0 + +171.5 -6.601 +45.18 +87.67 +255.0

Demonstration 7

@@ -402,11 +402,11 @@

Demonstration 7

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile - Nominal coverage (and the percentiles used): 90% (10.7%, 99.5%) + Nominal coverage (and the percentiles used): 90% (12.9%, 99.5%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.198 +45.22 +112.0 +285.3 + +171.5 -7.575 +44.09 +115.1 +283.2

Demonstration 8

@@ -433,8 +433,8 @@

Demonstration 8

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.06101 +0.01230 +0.1975 -0.2928 +0.3601 - -0.3934 -0.001900 +0.2998 -0.8660 +0.1126 + -0.01408 -0.001143 +0.2806 -0.4704 +0.4583 + +0.1896 -0.01257 +0.2509 -0.2097 +0.6071

Demonstration 9

@@ -461,11 +461,11 @@

Demonstration 9

Number of resamples (outer): 1999 Number of resamples (inner): 0 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (0.4%, 92.9%) + Nominal coverage (and the percentiles used): 95% (0.6%, 93.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.7764 -0.005879 +0.1402 +0.2748 +0.9456 + +0.7764 -0.005985 +0.1371 +0.3509 +0.9502

Demonstration 10

@@ -577,13 +577,13 @@

Demonstration 10

Bootstrap Statistics: original bias std_error CI_lower CI_upper - -16.69 -0.5454 +2.116 -20.63 -12.44 - -11.72 -0.3862 +1.862 -15.18 -8.273 - -8.061 -0.2828 +1.747 -11.48 -4.912 - +0.1048 +0.006150 +0.09227 -0.07026 +0.2915 - +0.01034 +0.0006859 +0.006803 -0.002580 +0.02373 - +0.06452 +0.002493 +0.01679 +0.03148 +0.09715 - +0.001664 +6.453e-06 +0.0007679 +0.0001551 +0.003181 + -16.69 -0.5168 +2.137 -20.46 -12.24 + -11.72 -0.3592 +1.862 -15.08 -7.883 + -8.061 -0.2570 +1.768 -11.39 -4.467 + +0.1048 +0.005554 +0.09117 -0.07452 +0.2804 + +0.01034 +0.0007293 +0.006650 -0.002291 +0.02328 + +0.06452 +0.002379 +0.01689 +0.03089 +0.09543 + +0.001664 +1.194e-06 +0.0007440 +0.0002257 +0.003140

Demonstration 11

diff --git a/docs/function/bootlm.html b/docs/function/bootlm.html index 1ba936ee..4c6dd271 100644 --- a/docs/function/bootlm.html +++ b/docs/function/bootlm.html @@ -554,7 +554,7 @@

Demonstration 1

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -female - male +10.80 -8.605 +30.21 .237 +female - male +10.80 -8.701 +30.30 .244 MODEL FORMULA (based on Wilkinson's notation): @@ -565,9 +565,9 @@

Demonstration 1

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -female - male +0.7494 -0.3713 +1.958 +female - male +0.7437 -0.4063 +1.945 -Cohen's d [95% CI] = 0.75 [-0.37, 1.96] (N = 11) +Cohen's d [95% CI] = 0.74 [-0.41, 1.95] (N = 11) MODEL FORMULA (based on Wilkinson's notation): @@ -578,8 +578,8 @@

Demonstration 1

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -male +44.20 +32.66 +53.30 5 -female +55.00 +42.33 +67.73 6 +male +44.20 +32.51 +53.09 5 +female +55.00 +42.72 +68.27 6

and the following figure

@@ -642,7 +642,7 @@

Demonstration 2

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -after - before +1.460 +0.6651 +2.255 .003 +after - before +1.460 +0.6502 +2.270 .002 MODEL FORMULA (based on Wilkinson's notation): @@ -653,9 +653,9 @@

Demonstration 2

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -after - before +2.364 +1.161 +3.542 +after - before +2.372 +1.151 +3.531 -Cohen's d [95% CI] = 2.36 [1.16, 3.54] (N = 10) +Cohen's d [95% CI] = 2.37 [1.15, 3.53] (N = 10) MODEL FORMULA (based on Wilkinson's notation): @@ -666,8 +666,8 @@

Demonstration 2

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -before +4.560 +4.124 +5.009 5 -after +6.020 +5.580 +6.478 5 +before +4.560 +4.105 +5.006 5 +after +6.020 +5.561 +6.454 5

and the following figure

@@ -722,9 +722,9 @@

Demonstration 3

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -st - al1 +7.000 +3.851 +10.08 <.001 -st - al2 +5.000 +2.563 +7.456 <.001 -al1 - al2 -2.000 -4.918 +0.8745 .172 +st - al1 +7.000 +3.955 +10.16 <.001 +st - al2 +5.000 +2.612 +7.447 <.001 +al1 - al2 -2.000 -4.918 +0.8659 .161 MODEL FORMULA (based on Wilkinson's notation): @@ -735,9 +735,9 @@

Demonstration 3

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -st +84.00 +82.11 +85.67 8 -al1 +77.00 +74.93 +79.40 6 -al2 +79.00 +77.71 +80.44 6 +st +84.00 +82.14 +85.73 8 +al1 +77.00 +74.90 +79.38 6 +al2 +79.00 +77.73 +80.52 6

and the following figure

@@ -790,7 +790,7 @@

Demonstration 4

'dim', 2, 'method', 'bayesian', 'prior', 'auto');

Produces the following output

ONE-WAY REPEATED MEASURES ANOVA SUMMARY
-F(2,18) = 42.51, p = 0.0001 for the model: words ~ 1 + subject + seconds
+F(2,18) = 42.51, p = 0.000104 for the model: words ~ 1 + subject + seconds
 
 MODEL FORMULA (based on Wilkinson's notation):
 
@@ -800,9 +800,9 @@ 

Demonstration 4

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -1 - 2 -2.000 -2.735 -1.288 <.001 -1 - 5 -3.200 -3.859 -2.552 <.001 -2 - 5 -1.200 -2.084 -0.3268 .012 +1 - 2 -2.000 -2.714 -1.260 <.001 +1 - 5 -3.200 -3.856 -2.554 <.001 +2 - 5 -1.200 -2.082 -0.3128 .013 MODEL FORMULA (based on Wilkinson's notation): @@ -813,9 +813,9 @@

Demonstration 4

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -1 +11.00 +10.64 +11.36 10 -2 +13.00 +12.53 +13.50 10 -5 +14.20 +13.73 +14.63 10
+1 +11.00 +10.63 +11.35 10 +2 +13.00 +12.52 +13.48 10 +5 +14.20 +13.76 +14.66 10

and the following figure

@@ -887,12 +887,12 @@

Demonstration 5

name coeff CI_lower CI_upper p-val -------------------------------------------------------------------------------- -(Intercept) +5.667 +4.789 +6.544 <.001 -brands_1 -1.333 -1.900 -0.7669 .010 -brands_2 -2.167 -3.127 -1.206 <.001 -popper_1 +1.167 +0.5991 +1.734 .019 -brands:popper_1 -0.3333 -1.076 +0.4089 .334 -brands:popper_2 -0.1667 -1.248 +0.9143 .724 +(Intercept) +5.667 +4.804 +6.530 <.001 +brands_1 -1.333 -1.901 -0.7657 .013 +brands_2 -2.167 -3.123 -1.210 <.001 +popper_1 +1.167 +0.5945 +1.739 .018 +brands:popper_1 -0.3333 -1.083 +0.4164 .338 +brands:popper_2 -0.1667 -1.271 +0.9381 .728 MODEL FORMULA (based on Wilkinson's notation): @@ -903,9 +903,9 @@

Demonstration 5

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -Gourmet - National +1.500 +1.135 +1.865 <.001 +Gourmet - National +1.500 +1.125 +1.875 <.001 Gourmet - Generic +2.250 +1.706 +2.794 <.001 -National - Generic +0.7500 +0.2079 +1.292 .009 +National - Generic +0.7500 +0.2086 +1.291 .009 MODEL FORMULA (based on Wilkinson's notation): @@ -916,9 +916,9 @@

Demonstration 5

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -Gourmet +6.250 +6.057 +6.433 6 -National +4.750 +4.562 +4.942 6 -Generic +4.000 +3.693 +4.332 6 +Gourmet +6.250 +6.064 +6.441 6 +National +4.750 +4.556 +4.937 6 +Generic +4.000 +3.670 +4.314 6 MODEL FORMULA (based on Wilkinson's notation): @@ -929,7 +929,7 @@

Demonstration 5

name mean CI_lower CI_upper p-adj -------------------------------------------------------------------------------- -oil - air -1.000 -1.384 -0.6164 <.001 +oil - air -1.000 -1.388 -0.6119 <.001 MODEL FORMULA (based on Wilkinson's notation): @@ -940,8 +940,8 @@

Demonstration 5

name mean CI_lower CI_upper N -------------------------------------------------------------------------------- -oil +4.500 +4.314 +4.685 9 -air +5.500 +5.314 +5.686 9 +oil +4.500 +4.306 +4.675 9 +air +5.500 +5.314 +5.688 9

and the following figure

@@ -1217,21 +1217,21 @@

Demonstration 7

degree_1 -8.000 -9.803 -6.046 gender:degree_1 +1.000 -1.649 +3.549 -ans = -{ - [1,1] = - { - [1,1] = f - [2,1] = m - } + ans = + { + [1,1] = + { + [1,1] = f + [2,1] = m + } - [2,1] = - { - [1,1] = 1 - [2,1] = 0 - } + [2,1] = + { + [1,1] = 1 + [2,1] = 0 + } -} + } MODEL FORMULA (based on Wilkinson's notation): @@ -1973,40 +1973,40 @@

Demonstration 15

Produces the following output

PRED_ERR =
 
-  scalar structure containing the fields:
+                                      scalar structure containing the fields:
 
-    MODEL =
-    {
-      [1,1] = sr ~ 1
-      [2,1] = sr ~ 1 + pop15
-      [3,1] = sr ~ 1 + pop15 + pop75
-      [4,1] = sr ~ 1 + pop15 + pop75 + dpi
-      [5,1] = sr ~ 1 + pop15 + pop75 + dpi + ddpi
-    }
+                                        MODEL =
+                                        {
+                                          [1,1] = sr ~ 1
+                                          [2,1] = sr ~ 1 + pop15
+                                          [3,1] = sr ~ 1 + pop15 + pop75
+                                          [4,1] = sr ~ 1 + pop15 + pop75 + dpi
+                                          [5,1] = sr ~ 1 + pop15 + pop75 + dpi + ddpi
+                                        }
 
-    PE =
+                                        PE =
 
-           20.477
-             16.8
-            16.34
-            16.22
-           15.191
+                                               20.477
+                                                 16.8
+                                                16.34
+                                                16.22
+                                               15.191
 
-    PRESS =
+                                        PRESS =
 
-           1023.8
-              840
-           817.01
-           811.02
-           759.53
+                                               1023.8
+                                                  840
+                                               817.01
+                                               811.02
+                                               759.53
 
-    RSQ_pred =
+                                        RSQ_pred =
 
-        -0.040869
-          0.14602
-          0.16939
-          0.17548
-          0.22783
+ -0.040869 + 0.14602 + 0.16939 + 0.17548 + 0.22783

Package: statistics-resampling

diff --git a/docs/function/bootmode.html b/docs/function/bootmode.html index 6cd25c81..b547c12a 100644 --- a/docs/function/bootmode.html +++ b/docs/function/bootmode.html @@ -149,9 +149,9 @@

Demonstration 1

Produces the following output

ans = Summary of results:
 
-ans = H1 is 1 with p = 0.0005 so reject the null hypothesisthat there is 1 mode
+                                    ans = H1 is 1 with p = 0.001 so reject the null hypothesisthat there is 1 mode
 
-ans = H2 is 0 with p = 0.327 so accept the null hypothesis that there are 2 modes
+ ans = H2 is 0 with p = 0.327 so accept the null hypothesis that there are 2 modes

Package: statistics-resampling

diff --git a/docs/function/bootstrp.html b/docs/function/bootstrp.html index 9a37955a..39821db2 100644 --- a/docs/function/bootstrp.html +++ b/docs/function/bootstrp.html @@ -105,58 +105,58 @@

Demonstration 1

Produces the following output

bootstat =
 
-       30.385
-       26.577
-       32.962
-       26.885
-       28.962
-       27.385
-       29.538
-       28.615
-       36.269
-       29.192
-       36.192
-       35.346
-       30.923
-       31.423
-       30.231
-       25.692
-       28.577
-       27.038
-       26.269
-       31.423
-       30.154
-       29.654
-       28.577
-       32.154
-       28.385
-       32.615
-       24.846
-       32.269
-       25.577
-       29.615
-       26.923
-       27.038
-       26.731
-       33.923
-       31.962
-       26.538
-       26.846
-       29.769
-           27
-       26.731
-       29.231
-       30.885
-       31.077
-           30
-       29.115
-       31.769
-       32.423
-       30.692
-       29.231
-       31.077
-
-ans = 2.7164
+ 30.385 + 26.577 + 32.962 + 26.885 + 28.962 + 27.385 + 29.538 + 28.615 + 36.269 + 29.192 + 36.192 + 35.346 + 30.923 + 31.423 + 30.231 + 25.692 + 28.577 + 27.038 + 26.269 + 31.423 + 30.154 + 29.654 + 28.577 + 32.154 + 28.385 + 32.615 + 24.846 + 32.269 + 25.577 + 29.615 + 26.923 + 27.038 + 26.731 + 33.923 + 31.962 + 26.538 + 26.846 + 29.769 + 27 + 26.731 + 29.231 + 30.885 + 31.077 + 30 + 29.115 + 31.769 + 32.423 + 30.692 + 29.231 + 31.077 + + ans = 2.7164

Package: statistics-resampling

diff --git a/docs/function/bootwild.html b/docs/function/bootwild.html index 885e0fcb..b6eaef04 100644 --- a/docs/function/bootwild.html +++ b/docs/function/bootwild.html @@ -218,8 +218,8 @@

Demonstration 2

Test Statistics: original std_err CI_lower CI_upper t-stat p-val FPR - +175.5 +2.502 +169.7 +181.4 +70.1 <.001 .010 - +0.1904 +0.08261 +0.007620 +0.3732 +2.31 .043 .269 + +175.5 +2.502 +169.8 +181.2 +70.1 <.001 .010 + +0.1904 +0.08261 +0.003534 +0.3773 +2.31 .047 .280

Package: statistics-resampling

diff --git a/docs/function/images/boot1way_701.png b/docs/function/images/boot1way_701.png index e923177dabdad3feb6e4f50d6f20f60f81b164b1..0dd85d1f0248f18087a7d431836633dbe9128497 100644 GIT binary patch literal 24422 zcmeIa2{e{(+dld<5(#A}8A39Jl6fo@4MJqhR8fi&%8;>88c>lT8A>u`h*D;XOd*wI z$e5wbWS;hMKdN8v`+ocT_Fj8f>%Z5w*8Bd#<9Y7;y3gx8kMlT=^SZ8~rb0u-LPa8x zX!h^hqe&tyvmlX{`cW>$PYl_Uc9BRXLi_jZI^x*S|JBLmR`>kEu%#&d+Rd8!K0;R> z2Q?hE-0zj}eAUCCzyN_P4FgN*n1+v^br@q)v(Y|2JW6Z#ue!d8 z^KNJh$Hbs4FYonN>)u>!39TEoVeh`vWT)O`Cvu`Wx697tWucV>H9oy{SDzU({!4P* zB!#Ql$#{hu-yGrm|G)Wf*5FyN(asG&Dg_n>>a!PB~tXW2}CeX-x`O5VAt=U&a zdBnwE*mYMOJ9aFMx^O`++g^xbucZ`ULy=9*rZqP{f9vWx_a&86SXj-Tb1fZflIkkI z3@6dkp^=dsc%6W5a?XYCnhI-PT$Q}J(njO?7FpSBr_rtqCygGP<(sYr2Q$ahlYV-) zQsPNzQ~KfmHSo<&zlvay6r*e%dq$GST0G6$p6n{5_iR_9$F$=$_u8-GE0sub{V28O zhJ=lwn2+b9UH0}8_oJ*Xq~jhmG?%N8Y`v~t{m?;4ntm-rv843b>5p6Lc}S!KSLs#o z5phcAmy<{y0>tay<3(A!{kcifxFFKkV@33MK>{5s-YANyklus!r_@r90laGGnoF!p zb~>!bs}}!s@qIQ?$or9^WbvwB*QosaPk+5n=`Or^&l>B6=D1uo&)z1CO9 z-dr8)t&5a(s46RqM*ytbqI&+~MWK0qUbP2$X=eLXRo^8YeK|WjtL)2C`{dBZ`bI3- zCf`FY+Va-TIs95r9w@rce~*n!J`(?dR&jP{x;N$2sZ-3Ofu*ITsi~=@rTb`U{h5Re z_Nb^_yLL@QS-HHK0ZVqe-0l3Wn>UYUU5Jm3?H=!M3>G%ZI#J>`G&Iyv;$I!QquWhA z)28EX(e-ux{r$R024iy*Eh0u)7y27sAa)1y7xK!??&j{=xq-ayYW1{!y>%&)p{mg; z{^LVK8bPY}#mb6{JG&#@^Gv8_+pckl?%2`dGFqvVWWay$zQoxEyzu$+=j(XYN}D%D z-TLzUw3eP;NS^?S#G^6p*-;a%(%;uNJ2xkE@Rst4ShetEqwI0K8Pil?uJZ)T>Z``N zmpV-*apP}`i^VNJtB$Y4x|AM%E8@33tg^c*+`0WaZ-is}_1OwnS66Sk>({Si8HHz` z2Jot9Wo79k>hw>vxcmG0Rh5=Hj+F6c+xP$I>EUzs#M(UO?1*k zSFb2JlTGrCC;6qNr6sMKpPJ;)U*m8K$zPI)+ZpYyw*K(AY?+A|H}{+B>Xd@luU<*j z%PxB#^#1*Ox4G%zv*M(F!P#f$PU(*4rweIrp!F+{`N$}!vo$qGGv zVUpf-xbW;tV?Unir{mTKn=;e!2t@K{N5UPN>$5KQE-PV6JQ8pFt(3k#Y>frmsMON; zH2x6VZ*=EH>R{W^T@?=hpjKXxP2OZ^e-~ja^g6y55E6UK&fl zXTCU7tL(?RfraIMVBpV>>WXE}TX5gf<&Ni{zkKOnW5X|(77`lD@0DtJD%_;_2BYAS zxYnMY^>lQ%-JR-^jlAh%)gyy)58-cY1BYAryoP@M%(3skf0sc>*zi@9+>viua&mIz z_XJOETR$RlB=2EWW#v60Rtn{aO>C|xwQ}XkuFlT>#+TJ;MOG4n_30(GwJ-MGWZJ91 zvuV?&9Xm$fh3=SQ7OM~x@{-4oAJ-=8S~ooB=jM(sW&He9|HQWS_r*?&TD*^nirPd$K~c}M46kLHD%{S) zV~)s_br@h!5<^Nu6ja_99~~Z!N1)yl(6+U;{qXVQ#}6OW!euV@eR+nwq4q$^X1uTd z%{5y0sm|d3zMh)pKLy0Zo}1*mk?ZFYQk?m=u*$V23S3;rn{%9SDT80L9ro?>K?WS| z4Xf;GabK7#;c%Zt{$LTa*oN>~NyD=5X@2UbPoE;>o!O;r_tf9-+1WK|CyJo?Cu&hfKGR|>CC}M*v`RE!u#q7Se=HbJKz8fVYwx76~n3&kNbcr4X z`7bPb6TUf54EV0!e!Mn8yQ-=RuM6sAXJ^lL7-ZjO>T!1q^5f9tX+bGr{j_fg;c!`p zX6z+wG@**R6qAcwpc6 zg)>{3^qHLb{W31Go;Yy=LD1XPr8D^uk8Emka`WcRrOEUj7s+KmI*DF|nK`%-3o=;q z^XE?_hKgj={{m%Pjl`Kxd^|jzlfxa}95;M@52>jE=RE9V!PQy?W?VV3Fh57L^35xo zj^oFVkBInRzrI2K(sQ~;x+%tKmdj1q$gsg8vE&(6=FL@_8I(V)LVrgGx7U{!mUV@m z6xET6)}obSV%&~Zsi>r=K33@G3RXLraVmRq-f zG(69sw4D6)I5xJVq@?@Xx5>##$4i&Wg#peBKA%o3*{-OoTZfH+&-4348MuG(nrw=O zU$(e4Vp)gU-pI?zdC{T9G^CjyoEZ4(dF6^(@XCTSfn7lmq75jm~Ee?Bb>_@FuSI-iSmA{{52^FJ&p20@yY`bp18jC<9pnnhF4?5>v ze#FP#4G2ImP%B=*_B-C;+}<@vW0P_VNZ%%WLNV%zFkr1oMiZRh%nn+2xKGQ8F_# z*LUKBTJxWa`*&p8b)WhCRNAI}k0!T9*LDKK`dw9KCDPSsSLK#N_rKJi7OYz8$gmhH z8hg^y)9q|*q@Bl~0)H71{TS5;jq_qGzKH&V2M>lxT1WI5;HMh5ujVB%DJ@^If@jMX zEZt8c3NQVP(@%fm>ACyzMc@nb;8g`w_* z7;o$G2z$0FLjI`zDtyOx|EjQGnFu#Gu}wEhSV^64^`PSt5;|nRm-O_O69MF(i?{Q6 zy+Y)-7vGdT*Ax;SF68Cdc~4j7LJu7aO9M7G%ImAFta4$xf6_(C|GJqhrquau(c8CM zczGqQzG(at{O$|$D?N`jy|UT9efv~!Nm0=)c6kHJnnYcZf7yLs9`3$|mcVsxtPcBi ze0Z2%sjuNhZ)>4vcXcG-HL^NFBN&^mm)z#y$sMNL?lwD#{DZP7sGwj>dFR1{tzIb3 z9J2OS^Py}+-VZq~3^=ls{Do@T(a~XNYwP0TA}23z&b)#|GVR6A4+#t;HdyDW|0lyf(O|gcR&sIQ%WWI{rku|W`SiO(BOxKP=l17cs+PMq+k?0Rl74gggV!5-K z5G%8^XI-`X+uF7}3^bt}UPZC-^7@o))L37iSs*h%Kc7~y+;j!*Z*F>wnwmPmh?2BZ z2z$rFgVcEqoq{(tGgGFTq2Yr*(It9I7C)QHkH{Sd@$Nfou=7q;M+jwO&yg4o9c3=j zGcz;mYsq)V#=texDLsyfDNCmGxVN~;GL%`p>40UA<~R<&_1%bVejFLlN-g`9S56pk-(lByeO})mtF{uM_#udY?e1IAn_a`>c#L!o%4oi zW@XP#l*l*?4>@Okqc1^LXH#&Il9tXy ztE}Yn^yyP%k+No95<3MsHE*UUL3c0+1c}NNbhOxI;;RF47GD>CO-+rhO2vqiwu6(B$;mYgKY`a`Ds1fPm5dmo4+Nqt$3u(C)jUbfO`v zkJ`1Y-kI`Wus;JQH+RRkvH(0qV`F1H2LMGoJ3GNK6QufPT@zRBXUB^X9VR)B+c`NO zp8og*A?D}jw>LR5I9L*J8^!8lMMZCXY{UU|bwyNw@bIqyCNt>!m=_Ed8w)wxZ$5q4 za3uEYeSLjFLPrsC<-&WGp7ll6z=O_k9Bv2bJbCIAHK(yt=e;#-G9Z2=&NVr{y|tm3 zb{!MHu<$u_Vi6G$*f~FkhUk=3!z6@&zN;QcBNw>cQJEqu*K%=j9hjE9XB|5CFZ{!ku$PyzA2KY_fW|j4-XHRPgZtjq_cupHcd^FVjDMe&2Wk3)9oyuK7;2_51hl_XKr? zYdDTv;u6$(s%PqiX3UEY6`XHGKQt6stqR%A9=%EAr62L=RQg-;7tm2zp%ujCu}?nI zPB_w*aHjP#0EUM#!}__y$q7MVD3JC5QyY*305z~~2CWajeEIV2+c#j8z#dwi|70(` zb7uy!-DihO9`6q@b{*3;FYBxbrdYjx+sSt!AWdc_Crg{vcj_0AxrGK63tUNlq3L?b zbB3y_s`H(ww`duelzyUV-Q)hgxw*NxIA*By_{oz`=w91~UvxvltVi-f*%69AOeO@5 z7x^G{3?HUI4-$kzA$y@`8}@Qa{(KfNYVUd+n5OS`sL00@gQw2EQ=P)c1qrK!nv$LiIq-&ItgbBZ*-UT@W$e#$>F(efsf5LL=xfB#uA7R2k()(Dvc?z?gM=7XG3 zw@k?lE;g>fe^&b&tSm?3ty}U;T*qpeO`}L(hL@2ps67p*_Zw5X7{ZjXnAHOz@v8|+usnG@=kcTJl++Tv5NDGr{}_0iaTT8 zAOZf_70W&j^VtpLV2>O)!=NN3BjdMWhw_xuk5BQBmGJ^!kQO2)c}VMh0|OE64@GP3 zab2V8^)ykpj*(-f%tX7pvlAtXQ7>-mGu1T8DAh*<*`{LW;0HYCAwmC}YX8O3TeMeg zCt1;vA=rp#2e_24kM>fJRYXTen+LB3vbgz;LM6Ta!M%GiZqm4f$G8OK1OaDS(rr&X zMUMg8BA&wSTnf@J+FlpW_HQNWwkNrH_-3L_Qy@`8L&u$TX#pO>dEv>f<5S6VaoPz5P7Pw#zIU+R#s3kHa1pPN(xcMn0XSF0L|m(Y~$ZF z&1@?;pAt}Jf{HU!Q#9+hwdPJV2N)4r0M%U%*3peJ7c9^Uo9hyfoXbK`Di0C0A}FM? z3qk_uyeEgkGAwG8>@Sm^UR_KvD^xi5n3;V;sAIRvfX3l03gp)UD2S6|U}73Cq~KV; zdgWi8u{c{bSbddS>w$Pr2b690LTUU2=xJnVXzVuC2^I#sLqb$k^EZ0s_A_yxdr@x{ zA?K7f(qD^R?@foaNV$47D!L=`QQcGhb?evjWvk*Qjy}d}qbeOq)De=C%Rwqr^5ItT z!+H>`t`eoS^&p7#;*t^&DIOQkr<{S#g)Di}%nX5}J|!(FIRSR-(0wr*a3n!kM6eC} z{{>`Ua&qDUQ`OnIijzQYU}>J8{;2F!Y9@*wXJ%*r!_X+q{rtFL!v<<*VO2FX<5%Y& z(mm3ORV&|(LJA;qiAdFd5IAme3LTHY~iBj<%mu%I>exL-qguU zm$LePko0JNcVh_XjoXhG0d+hG58u6ew@}5O2FatZ&x*Jxze8aX{1ZM)Nj=^fS32(U z9Q0$8{R|d_&;lMve@t`1>VWFT6ZY}(xxKh4KrY?7aYK~F7dPx+Yg?Y*WFZD-s;&P zuk7p@?Ag)kKFXbgi}cU`L`Lpk<2N@m;STnSNyON2l5??P^mbWTSRgQ8 zzkY4Typ*JI(Cs`}Y%tDV(_-=EO)NJFF%&uH8Xx|GHA zLebj3o@Bd?+_=p`r_H!dzJPy`bob3COpjJ8rf598(icwJxwMOrjqiYf2a8KCB;-Fq z?XqrqwH->`h3Z_FsgdSf=g!Z#TT@wddl1e<`S>gadd79ldYau!Im7SQ8z)fR5o9;E<&d#C>Wr>>CRvi^t^iK=12#8 z$pvcl$#i{tn)bf>baYhxXq*O`GNE+*z_yH4V*`Bv-uuCW2Ozz%kBWAhJ@!y zLCcO7cgK$Of@o}Mi-@uJh&?vVAr9a3}+kX7Zz%h1Q9KD z%Sp5Z@yN#)2Mh=iFO7OC1ypaD@DjeTa(n-dccHIaObj!*{8*`fs5}86q?|^+p%ZCpYWk*gH#F1r!CN%2i)gu2Q(p2EUHJnhZmOZnm#W@CFkSv+&e zoa~^j*Iv3a9+17}&6^W=z{uq^*vP9^#iPG$J9=bhW=8Sq0Tf94i2)$(x%iw* zNbh~ywW7_#b&|}OsYpDrNv%*&qh@ah1!aJG=Bm5yytTg*JMxGdy4#n1xl02NnU5IP zP7GYH4CBaYaG&Q^nBHffMAEQD(?lk^Qm@>)wHg$}QfdzM<`>DdiVVGV6~ar+>!0{5 zGI6+X&8AAsve_MX`nj~5;ip92^59@2;V8j_K|ZGI& z!`-o}p=qb8**W)ESoDNh=Y>W@2xrTXbhLE3ZTjjz%Jh;vR)TGA2IExZLyyX3Yj3}X zhUUfAi9dWmT6#K4X@Ly<1V`Q`-#YxWkN?J?tL=rytCo8h{~y!3cG}F&77ceyoNXIy z)ZM&=%5#_fJ(7mN|47dbk$gAa%ylmITD2m$I$ZE`3bS@%c`_~Oz(H`2V1UVtU9YKt zcEY!gj)2>@HxYH{@Rn|ycY`0*i+fWRs@Gnx^IGbmjfe4H@OMw6pEf7TDBk7r5LG^E zqAmGf$z*LOgue%i+=T}r^v$OyquX4_dVEhSZ&jBbl`f3+XT%7u{%krT&{CmZLUIdw`G zZ6`8o-q`1(0E~BxSV)QdqbS)s>!UMUUzrwOL0iPH7%XDaY$3LV{5215OY4bh+m4ld zJAO%Q+O@bDqa4R)H5RLBXq;l@)Xkv7I)Z?9WN^mT+vJG2`*zwLz! zTSuOVl79M-Q>a*7haO}m=NYa9&E&iLv0aQd{o(Mr{e%pj?*se#?%mee_kcnohOgeg zvN-|3LC65CCV2`e!~!^h$A$l5U(25(csovVi5# zVx=YGPj}MeT_c?bGJzkN-EGjKk{-YRtXqpumP1G(^=x2gZw6@#AkJjm9eOI_j?os9 z;BSFtJMeK+rX4^8pv2J(EB!mY+t_F|Bz_5^ty1puvj7Jb&CPkZGBCVp6}XiGcjO=C zy?YVbE(>!LAT<`{y7_B_W>#65d%jI6{bc1nUk{;H++dU}3yY0dsA^~Vy=?PmuQzUQ*9Sd_$I)*1Ef^q324bj;f3ML+AVhdFPD2wOAPqF&ZOQWD=6l z$Im_|fQ~p`RkgjjMivWyznF;AR2X-{RJU|?gBwRomi;C7w>pA-SbA_|WJK5`Z?-}t zf2(oMBybmp+vIO$|Fbg?;t6Qxu*jsL8iFtByblG_iD9A+_Fv;ZRtUbqRzPY@s-K{Rs(qdiVB zc<}=+9F*;Qe>w}O(dW1O>m(aa!DMv@KkogrM#l%V@zQ=+&48H>{?!bwP#GYwa+H2n zrWAAolI>}N&l?6_RoSx#-iIdZN7i^nAkE?v6qFi3-GdfgUacH`*j}2%&iPv`4i-AP z#cMqXS_tEYhK6RrSb2{HJUlsv0YeCSZ~ zZP8PsefaRccsu_4UKFR*h}#zu6K*8eu_Q^c^6uezP)v$?I3@t%Pm8 z!C5S})=bz?|F)1M(xk|LsjoYFz0wtjmX03tABkO7Ho0L*xzr*-6j+UjBt&+D7iaDe zb`!CEyXhW**mssKC0EG_<=MqRmbbFtk>VGUO zeE5%``FnNX?h;UBRfJMI+_5)#9WyiUZ`z`DJrsxEvSlG*Y=WXW6tdVJWn78gi|)Y6 zst+I)u7K{2j*qFwc8iFJ)bCxAx@GZJm|0!A|f{jYWmjy*L7Zn@AO}X$o55~nL_;6K$Hyt6QtX~Z~WOXEqH{HO%05#Lr)b#Ym zY=;!0%`O2#-sek-5&^V=e=r#^8tfLe;ac>1zPdK(sL24N`!NAlMqwT5CZ ziLMkFChg`@Q}JIJj=6-A6A&9rdnU?6XB~XLx6o%pDqgm7_2keS+RBroZ)S&KL_#-! z+S7a465<>Pjgewz6RYN&sq|_Es21;0;Yyn&5dxyvI|$DU0Mb}{iBMG~AFTh`rdKt{ z8)$2j_0zkMqqw=bIl2asCJ$7eK~hJ*38UFt+zfuFi_RaFhNwA6>4CY|@V1X@P)7e@ z={}4Gvf24j8Uhxn|935Yc^xolCf&LKTIAJLl|joq7&Dm;OJ}z8L^2&g!=m+eX`RL{i_?2{96)MRgzS6Z+P?kpxEf#@ zxh<-w5QK&yB2sN3hITy?RtKmPz9YBMf*&|w>);?#90_$ldgKjar1ojPS=n0WnJdl! zt;&>#L0s0$!d0_#4KiA6q}wHM51_V-0X1eHMm6(ZP;bMz>OKWVA+ z+ewc1)~Sc?K2>^~(?9buxPUHmN`Sg_lAskKszZ;_i%F-<dGYuYIUIJClB-1tqOfw=} zEUXgh9`vUXIOaPCSg|(_;m?pSdAuB9*mef7CZ0RLnYCM zT-Y8Ppq~KMY(o5jVMda*8E!8|4Bs)L_E5P=ZeyO0X}`F3tpsow0m*_Cw|1>&w*6V? z^hZUEUb=jCPunVfA?3IjspX&HoC4cfeB0XEkPQh;_#6EB zN)2G&fl-9m3ff@+`2gXJyw!-c=k)UTuO<}56cfeH0kn92WWo$`!js339i5#81KhIl zm6ZkMLenV@f-0H<3_tjy3<6of)*4Osx@sVw2TyB;5Q+f{YpSaU0S(X~{c6w&$O+?u z>rBRoC2+Fa!kj}z^h!@oe*V8@i4`TN$~4Ql)Gacjb*V8ptPojni!2aJcL*U!Rci8iRLx!LVo=^b=9avsE=m=|9b#0hBDrk|@W{pXqE+hZ z>aYyezmU`Wo9NuxOF*>n^1mI{L|3)~IylCibP|pb{2GD#%@-r1xYZHh2$d3?*;aA! zS~F3=|D^o^TX2V$pi!6yBO91zi!rkTRZ9Rr6CxADjGP(^)kDOW@2y*C@%vEmw`A`` zaG-6!c>-P*F}&8ZkPb@%mKN1iP)6nw&;guMu!TWAs>W+JlOe`0kAaP0`bl4ScEwJA zNKDB)qmR!1#j15%9G#q8f7Ynrq8_!-^KD%0mOlG*Ae@o3@czb=4^vaO!45)>4|7@$9ZW{Q}_}=&eE*(3<%JI{aIOAxlLuqjvc70f!7O{ z1TOi7@}=;10C8cePw+wbhvdR;^r`_{4vDT`4bkQv8p7Vi7PBEsstd*5@A~yAh@*ta z4lsbe7xOfzG_x};3u=cB(NIz0N1v_p=T7Rkl$690x?>`dXIC|3bw))-nq2?Pq3D+L z`K0}~AWsr0@NAQG}a_a+c+%F)m8(6Oaff~(t0VrTr_Ox^qR3K*xfb63DIj1-1%@VTYDQ%nvh{koY$Ky7)`1 za19cTELff$P!zEw#LP}k)sAX8?myT)P*JR$MKsB7cbs3TH~RzNCyF?Mn8H443oDoKZ6Zgmb{`Mx|keZELl=pphhAu0G4wT zkl5n()hn=wW6G}yE-XTNAtYKpDH$oLI-sYi*|V)AEX71Gqw zg2NlY0bWRX4vt6watNbk!c-pOi&A=KD|nqewDedoh^6{Wh)!ICKf8QGaq-?i$r_rC zHCiSBd4Rt`z)MVbVA2boYCt1G*xk5s229%qUu9f2NH8v}CvYfKdDz}uVEw>oLr^Ei z0N4P7E?gjn3ZUNz;KAtZBnwMdw~&~X0G_H%x4ny0RCI?q;#GFGh+b*|5)SyW-zgD| zv_~FlQiOtQ79lFaMlgFjHue;X^YIfW{%HZ=$%qUOcgjC6MRI4jYJtixQ6A3FxU!jT|8DJg7*a&lvc@r8lpdW8K;2-iOECzRP!Vk3MKnJsv z9sVh~;|4&Sxw*OCbOc6&o1Kme1Q4+OKX!WtrFRdc(^1RNaH-=n_wPTS6m;O$ynXMM6fH2#X2a62;_#ptl z?&lJ6Hzj6cqY9!El*2Vzjy$wBvlYMt^{6?wZ{LP@NkCFk*FF>%20(!U z9ud4J*wXT(4IbL$=9Js1$Obf)k`LaFDU?O1>FZYr4_sb8w{8U<-G;4Hc^4KLqpZzd zJx!UT%j&G^lEVv4_wCzv`_FIDShYhU>*<*+5XZAOGBOGX2fuJ-irkqcFk#)m;%^i+D~0zJo#_lPlOpU1*!Zw%66q2E)Q??03!j8LMBk0s z&k}6ZfBZ-UJKV=oRG)r|S2cug<3{Iv#+=+-;!W^3WywDakrL3TIuTQez>gj(To^tk z`ipNtqN?+`3Ep&o^O*1aNciVK=>ciQJbp|dNI++7w~4VaS3=voa^;qC^dk3ke+z+- zOt%r!rYOnfDR3NO^GmE>ji?=pgZC8OipbWjs>G1ii|1=usn6Tn6NyUYCK-v9E&7Q> z{+V?C#YkKDb9;#TlV9^MYBRdR|9*ftgOL@c`MKFy^x7$F<$JMEsQDP$xzaasS=5{S zj*UNT3^4__Kk~Rl7t|DqaWdA&dDRUWg;`Hl;}-|LqhF>#=zNnG4Q4c#1v&g^pF1S5~^h#Efv{ zh1bWK+C$Wbd?8`$ZHPg+#V%9P63G(m4$LRSBIT~wxna>VeQ0@!rWE1^N{Boxdx#HA zB?R_l{?$Q}=R!4D$iksjyKLiYO256Bh;ze-TGl3rgS^+2%Y_FIy~>?jI7SL&{-q=Q zVqq-YjQVo-?p;`7vS1<9O=>=wBt#l*nK_yXVphI%m=;OvEV>M#1L3ZF%x?oe?C zCZ>*x5K=tS&qgte)Qi13WFlza&huM|$t01SA*Fd9SW-cDBYDuE^^D9~xBu ze`Q?1x1zN4w$W0mkLOw|9-0v_mpK3y&k2bzoQ#lR-J*a&+ntLC8Q`H}C;mTq-UZtFK*9lp>(YZA z9m0)S-SOR+y!fvN2^Kya6oD4`s6Yubrev-!P&Dyz38hZa#y$R%Vt4k=MZAo6peh_b ztpDQ7y}q?pRoG2=(?1d+bP*;sfD2+YA6|fs^z>~#J&yUYhFKTN0LmI0WfxvUyDn|U zJ2I3|etx}iPwZdsSW}L9{(rJrS#ohkQE{;lTu&cA+JPMdI#cpNt=_w54`iBd;_!eG zek?e4D<(`z(5jjTTdzA{bIVjHXV-;m>g)6mWObkI4_ES!zPEycf|gb4_QX`jOSt6% z$_Tq|=Wh6=Pk-19KTV|je7%_{<5VF0a;rG0W+l1U!!=pC^{B1szP5eb6LfdL>8Nw; zwss5if1~dLjr?e&$paAKP&v%6*I4v@ivI}IPT2X-H#57HgA?W3buyO0Hu%?r5|8t>3+T!I`FsuSd^g6s0fQc-bGEY4% zD%!(Y1a~Fy#D`=fSv+CDxNF|tNjQmMeC54eF|x|3RLz?TqEA>3GAOeiW`aY5np5E4 z&HCUY;W9$6PeV(q8w9m$2&a%dP;k8jJ|j0L$IMzMR5RT?w>*B%Lmed2skXpB-qpda1h;@4=1`Ha!kU$JJtYhT}<8sIYy1jYxVB6(@ckfg=y*foT#Uq@$ zLQx#UrR|i*uLgbBEZPoH>;&;;^$97A%lq@aNN8N z!(oBfs8XyY!VYZ-C^St?pNUj6iLT-EiX%LJG(w&SF5NQSo3qP9rEp~nzaguqC>MrI z(Sl&SB8UevKk_{qN~rLBIr9ht_=$g(3#KsWK`;^W8bU_O-DR$^-=F@ek0j*~-UEr~bRB%Nz61$b~8REK7{JiJ@xd9h$+_=$@dd#!a zABSk0pw<8#-h){Qu|rJt{HV1=(FB0Im&lvt1!pp;%<_tFuD zN<0@};K3X2pFs)MK7GO_@bX|s;7eFK=5*f4tXR|2!T;T6o?4@|NzlcNdhl{djyfrE zlT`aL%!xTd34z7;G_(?G0132K-#R-P^-f{*!fo$&pwsKdy&&Pwd`Ue<%pCd(zeW=~ z(N{kj7x^fDnj;>$4NU%3915wjhbrS~)E;@252QyS zKF}+{mkcVs7hOG=7CFd(*x4X{g%V*(Ib3Pd2+9RfgJE?T2g5<)(6We?f+AcvYX{U0 z?IH*6Q4srSFS99$16tm_Bb*D|t~Z|iaDV*h(IYQ9uzLxIqpuREh$1XLh>>-4bmx)&aQ|>NzPm48k@gz5fX-*QN_Mcc z`JCJu%#zsK+NQZg!4(cx=PeRRURsusH=|UPxp5o!QAgS@4GO#J3v_Gwa)E1CaVpFX z?dB1u;slO^M@|X;)diUMaQs2}Yve~{L}bC^njPo`0D^zMrWTn+>c(VVJ<*}AVVmyo zS7cXoGt}pVR$F$L2WM;DX0G^eS_uwFY(Xbh{HmiXR6{=UFU^VO%A5BRqF zXl7v}qQikF;j+SB6d53GFh?IhSYN>8JPd|-JWQi?FvqBF(SkL(#^Oj2x)3T(&~kw$ z%v<$Z+uKDQhg$D`&U9axcW8EsMVA9cgGIq*5+6sMl8$`?A}Jk`1pdW_ER0M@{qi(Z zdKIGVM|XEHTJqrF?(Xh7%u<*;+1id^5Rs07;Zu&2oxA%2VOPQIpDvrMlIM(oO{&p(mG|9xpbMj zqByVKd)DU$PA{P3+`909pT-Ya8G6sHTems}#oJ6;c z*<5!tFsQo3XbS=wH40H`^xWbw6u%oTH@GAu?6IxN9g{}`z2cBcp!p%{ zp!d5DweC7NqLHr1cra+Ie!g37SlCfS0gMkA`DwY-n*^eBqNiqeyvkG&o78#JJ7XcL zPq5t)>4zxW`ubdu!iYrzOK=*Bz-967ccJOcMdLV3seRPf=>ffU2t;y9JVP(Eru zMcX#k=6_x$f4-YRK~KOWtDv5dl{E)u7PN7yA=^0Jmyid?P?g}jGM@XcJG)A!)gwVs zn<}6CQ)B@i1MCdpI3gt_#Tw)^7((0<(^kD9glF*d?RdqB8}-XjlLbaLi+r{DG#J0e zNOW0DEk@!@Oj@9OcbSCTyH^{p#fxuI4)^G%VH_3z#sW>xr{H8KFR$el>lASk1bzr` zqmFA56Z=$G=YXCS(t%QUQV?l3kFI4e!V>9KN zKORWi!RGbuq@A&GGx8B$jLA$>r%dEyl$55CUI=ISA$Z!P*({)Wd^C_Yjv*7^RmNk1 zFJmNFC~>c{GHwD~K&@>NtRT}3mMK%y({7mg{LykoerX&qT*Pf9%o37;ls+WA4aXiu*HY8myG4b+TbBysyeiHbxF9-yI>}k7#ue< zi+ie4nUUz8L?Q6K>hQvc6;;AWM9jvHyC_l0)>O#kLkB?`z$D>KC_^{zK5*lCgj7H4 zr;&oHh2_<(qQhShdN}2=DT7RgYpQdZx>PX=ems|wpQv5zp)aJ5nRvU=`nh$>Jc15B zoHdk`jsuz9IEcXo2EdH7jZ~alId;JK93tm5g38Fj#H16gOoM8V86+5B-d0xjL%lDT zRJhUF+KS7D*Z>+%T28L1s!ABm0<;o>a~k$_nD_|s-+5-?dkG~iE%QR1j1%lqxP@#$ zW|aN%d_Op*Fq(mxY_x#)FWzuD-MQNVF@OQD1JQbjt7fO}aL^5mCU$@mBS!hfN3C6L*-KPM8Ct=1}&7ok} zIsbg?a~F{(=WT4DXk#wr&~{|i3B2FeuU~~sqy%7ZsKutKNI@lnjb&(fnE$*@BHB|# z4w@+S2)Xzt?Bb2akLoT(t?hrXHupkX`oZfSNO9@r*GJ?pqOS=wsRdZM*K>s5F#Xc5 zUAv~-$A11~P~vk=yFgT5T`F2T)-mUV-Tpl`d%nYa2*C`~7z02!H*VgRt;Ev>8^k=rnlR$G9W+!brqZ9Xm@5Lcd#>D2bMAimO2F8L@eA%*Pa8q=C z`*uXt8~x3SAXx3vfrOA+atV=~qaNklJ5mpGH)JE%y~(4qGJErW!n2V=%pLCCJJ-Rn z5U24_3Bl9=oYG`hjj7SN$y@`}ve(pL^a*|(_7&bOTa2?V@XO2RmUc7cE!|(=j8nlL zJYc1uxQ6RAGdI^~cf|=d%^0<#U^~U>_3C`v6}m?#|0{wpf2l{Mldd?*{G{vRP5!r# zPlq;Pr@u5e+>E1HrWR%n&4%8+`{+LwIuYd(*N>qRxGaHyu#e#{aky~d9Y^Moh{ZJ@ zVH+O$kCmqMbL4|7U@Q4+;WgNND$Wtw!wmcPOT!WmBLqknKz8)~slma)bV`}YF$jdk zb0m&J9)N!caqEnGJ6y)6u>` z=OQM;(RZ0#`W}O#@i-*qE48}8b0l$mw;4Dc|H7dqgkcj>G|Y)ZH7XqOO_=5wgy0S7 z@&W`z9QQHOvrOx0F{ll1x?)2~?s@A?DxG-(U2*caMQ<2>Q+T&<@nKpF9@HxnXAfIr z`P6?6(K}klK^MU;e;!ecb;JL|KCKLWPpD;moZ{Rk!J2r@cVfo0>AVLWN{>W1#|&*N zIh-FW^V6r*=R-E)2cHb*PQ=2&0NgCURsq39Q`!KO;ZAiBE?}8fL_`DyZMng+Ib9E@ zz2)Z4;h?UEv(vzV(^FGP`svD3`x;@6hkXM_endSNV%k4N+cOK3AQT)dc4upA)M`ft zX|uRnKG3e>^t;_s&TU&C`2C<49fW#Z@(hmjB2L@H)F7;K2~A}fm!5_Y$i~VFz;$;a zJC(~>klNZB_6eYFLTY-bA9MCOL*Sbuj#UKS#2kAPOquABT|->8xyq^exjBmamUMPP zm_Fi{pzto^Xzz;yZEYqEYgt>Iy4gBqEh;8Hp3r?enee%S<_j9Ev-3XdBf{34#y#?3dvw~ZPPpeg1cb7woJH%_hs-nZpcx?@-KwHo~au!jK*`B9z+ zGAEyS5EyfcfIRamg6lLfJzVadrDxN~F;8AWLL|nR@O6KGMVs~_v_A&O zI2G?iv6u%8Mo&m-Kh0}FocSk3TysC?#-dpJkbb#JV8mKajARlGzZVo(+^Oz>*yQJ< z*8II#lyh)BD*2#m>;~^p{u)p%7u66fEcmD%z@fCNYEHDMd-fFJj2BCoTKTPUh=7t045WH2S$Nk$6rHco-rN`F z%N>Nzd_Ekax+TUl6?F@EZ5Gx*ka#CU&4qBpP^epzE&uWP*e3rERqmMCu23w&zzKGS z)<~AQH6LU@7{|jyL*r*VVHP}x3W%nOHixVGaxo^qJIl+7aTSOx+DzcC4sUo3r*Zc5 z+-b&grbE!#@5-Tn0O_vZ8YB&dNjy{)|Np|!ir9L@AM&b4SRqi#6EA3=%honNm^(|+ z+h$_$eFsccwmLeW4~pcP=^H=#n6ihxIDVwSL2F4&qqRVFuBKy1hu&57ixxB{+R;A= zP7w@0W{GhaE>aO8Cjnn5`Cu93@o0l;n;koR0fpd(hnE7zgOAP4^GIvBQ&bu7Zvt}e zujsf01bzgYxamJTzIQ(3A+5rsDd;00GfUVR(L%u=^a&vc*_lb}A!Z(-r4c7nf;7N6 zU~sB6Ha4n&MJ92F$J?pT>7WIfG5FYqI9Kex`bcdmIJh`pgij{%82?C#< z{uz2sf;iuU1#Wy{NgTn%HMksN4jT6jbabF7uFY0tU-&)(Zwa9~=ffzD19`T?D-EkC zllz83qGv|71Eki@q{A79RYWTX2~tS#OMQJM#POCEcf2`P3df|BgEadHDlziNp;%+Kj81CWGvX6T%7Z7*dG_6HYWlZ>Vtf qbifi)#;sq!$AHOytIXY7pr9+HEjm8&c^%$}w12PKo@6D{EB_mkZ-7<+ literal 24186 zcmeIacOcgN+dh6ZiOR@mC}}7OWlN=$6ru=~Rd%vxc6ZTIL?lU+Bs*lU6j@nG#${!e zJ+jyLcwef!`}sW2^Lf6%@yBoY<8yz6>v~_W*Xumb<2;VzeBC}JFTILpJq?LOT6N<1 zQAHAIi6M!!*pqrO{zZLL%wZBq^YDqIhtFK8?`yPIXV#maAL=ouU&g$xuJQiThT}mjLasX{SKV+Gv$1yfewPK;Cu{{+lX7&xZeo(Bv}U zyU73loBwVNYD;)q4*uxy*DB`4n$38yv9T>*xps2~&5D&OQOdTf#{KTzy;~L}K0eT_ zWy^8@LPxP*uYRjk!{p|567N8_ch{Xmy_`O$>=1WPWtGn>cD|!dE zMc=6Yc#~g0S@^Z9G|vhcuDak5g-Cw0SQ^6q|A7~{$d_?7L$~y?P?Tz%yqui1rDb#_Y~wK@qkOGuouNOJP|M`YcG1B z@O1xV;a0CRQ7U~I1KEy~9sX8UR=U|Rp?Qsr~0KoK*~yLb0nf2-)NOEepODC^IA^3k5$rY4uV z1ifaL>AvSu9xAcw-&@Zn^J(8}5frEpqS-kH%Ft?k)*U1dSbuRk*=f4YoH0s1vPnSzEhx3Elp|w@c`l*yyOK=_Q|tS-rIB`I6sk(_YA+s;bJz7bh_{u~k@D zn43H5;`?kl6u6cDjv@q4f!-KxHHQyt@*~j1CZgRL| z`KtAq)BPFTs41lyQ#0Iw`}=xmUVK+kKfPQOPb-9<9rYo$EOkqv}Yh4}S7vSYBq=l8zF8clz76Z+Ddk2a8$hpE^~M zbh+kBtj2VmLGV2`G0XQiR;3&mI2(HG-V&m2TKh-jEmeXM}%pD%<1oVGkJCEI4uc@i|{wAH*ty{-Wo}B$2 z9;_R;2Jy)@Zg2i3CB@Fdg3CpJuei7x^~H?x^biEMN`zv5W#wK`(bSeJHL)7*^aY+9 zA7sg6p)9dbr>Vbw|8D>F-Lmam^-uQM$k<2ZrChmkSN*v`bB>gwt$!RFMz z+wV#G(Kbit$-%*)pJGu%)G?x3{;gz>AgbOlSY4+Skwi zaVW;VR~3|%^;aoKB+Zs&8&+<4Q1m&&Za~Iw7uQzRIL!k#-Dix9B8N?m9(AMF9&Rs6 zCdbmTADqc&)k;lGweIYi7f#LX9ZwA#({1GC%La1hP4}#Q zDIat`QU4^OfJE9{Fw4&7PJf+>&eqOOE5)?&!@UhzSy@!8*+h{}KRNnn+IKLEh@^b` z_ASeCJUu=AhMU{nwR_(+H)|mvE7&@Tw6{E}dRNAcX&FSS*QNuHkixG{`|*3}I5}nZ zN^VP?cO*)#x%A(~c9)y|@5K7+|NWyH|4Qmh|4y<0DB6GL+l3r`GplzoP5k+op`jti z@&1#?kM9YP!^wT&J+Vdrb{N|Dp@v(&fMZWo}T+=Z!>K^VWah>>jGden& zk@al6wtMac!}>Sh-~P4a$dMx(+1PabSK@8?hOg^5I85DLCy;Dhx5dq{DbwDAh3B!* z<<71yRUB|Eb$dsLp1%HLxtF2RUYqt`860nR4c>F{UG%v`O~<~ZuBVP=WuCHqq-_EL za@pD0>M_ehsE9=yY6}ew?fMwd*4NjFd^$L2j;!~|KjnOk>&#F=x=oME)b}0O(Mwe? zC#R=nqjOSGa5o)rU=uYzWQ+XKqU9YJNKViznV7gz=YD*%n5b>fm%e)~Kqdp|@#zuAc-Ug8yt2ST_`3(%ZZr!3L zr{26-FxE$&9_TWL zNK0dOjX0lVf^rT81O!w^srqYdMS_vP#4Rdp+8}!1 zz-+~{Bl%i)yu1`-WiNkz<=wj;$Jts&EjQk*IeYo_i@mk+78VxE3ffv*aTvC{eXC0h z$M1wt(8JB-P7CAaY~nRo`7|4%RQV(%BslWE#He9)9f#Xbc;quOFjQta+Wq;^(j0lI z7HxQ1A*;@hFJ5fpIC}p4WBPZEjm{q*?OkSIi^zSe@iMJtryKQZ;;ZcAM>!dp;*ydP zeEs<0tHFd%&~$09=q_~)4b-mf1mIcqps2m4r=;45N6t!|MefbUshbz(Ra+;(d2gAnCIhY|kUXOP@l$4(@Xt>qU)AG$`M79f%W2 zqq{L9rMDZ8@I%%LMX3_&Z`zoyk$GhZuUZqQ6{nSx?eFiOd*QwYEA}#$*vm~7GBZ0nUV6!%F3dmq7;Ypmbuw!y&7tgNafG{!;9`S`ni4znbW1h=`tI5?TD*5)U?8{Km9Ors^(kiT2*4L79(=C~&qz-% z=A|bs;CjQJyKVnZ%~@G_1|RYY3c|y}gp58P|NE?`m}yaYF%2Z2Ja35cWUw(wS|n=?r+r6Rrz^z{+Y9UUE$ zlaqk*#k`;l4h_6vW>Zp9;$e{mUU8?7jg7?%`e-na8g3Nn4v&s@7zvRMRH&FEtz@~( zPGOT}o)j~X1aB=Ij*Q6J*;(K{FLr+oqHDZ^D&d4QvT@@^*4<~#kr(Qc@XsOiCK{1r zgM$;_LcLzf1u$+RzBE%zHBgqelq_AgtcZ6F$@KZpw6mOwid*ZE+{;(5UNQQg08rN8 zBsCl*svz+obaeh21hpaaGNwiJ@|WFp+le>Otxp&G!1*r~v?!LEB=aFL648@fCQ8G> ztDcGidJVw2v$KxswqxOV*5#Af%~ge%++zmbFWj0+x2GxHULJ~en4?+1TaAY`u5H6cLvsxle=4K z_(a&`@q-6SxfY?7qI$(lJ9dPl5if~l_!R@(q8|zhkdJcmsFYQsR7%Us`L=JD`s1+V zR_5n-phBlO2nh%zI*fKBX(Q8cA=3a$hKGl|f*ABN@K%=HCM>LU_ z;?Hi`vL)SafcKwycddx2dX!3xe%X@%U*BzR$7N;LNTz0Fc&!t7+47O#5>iV9Spj@= zDPO4jCr+HOx3>p4c>45df(I6}LcHjJCvuZn=Fp8kGVuP#$3n7`_0`o$XfaI4$=ih% zSMXCZVSCFJG`q9Yi&?(||}Vkj^7vrdviR#GaH51(?%qG&QgtZ>-Yn^Is?tJ z&jE;Xnccp3&reMN+5O;&)t&>HBc54V&T?{cTq7<-w@kZ@ssJF<1xPU2Y{`-(R4dmG zeo-?!(X@*c^7xN%_@YsLo4L7r3ca^}|Ni~p!GlTdViD92e32W4kWb#EuRQ(o4z(?GxI!&ta^$&Marv_O{t1x_vxL+>T%;OZ?;5*qG!k z=jpLk>-criY=Jd+nB|U>&|dK+G19Cdb+2*lYdnXTxHzkm{M|pGX%YXq-yDI@dUyIY zJLIh`EG8$rf|023Ha&4UZUp?jM*I*b!{qa;)0URQ`5vr#X4`)Dkw;LhzP@v(qTAF9 zx&-(MS@Gfqtt-~uR<-+0pe4&ek%uH^GE=*|~7h5e_@_ix^Oh}xp_V*q3G=#MG|)d)pB zz!%{4lG0KHTrb%yC+P9x`fvqy0|SG)4J&Z|R+|J#czAgs^j&U`=YpvrVqZ)wO-^FZ zKgoujPV(^~;CirlKoy1+A%~N5|5`#7`DDjVZf@>9dtMh_kd%C<(ddf|wVG?rps`F| zExf6Jy~#3ZP%Vo3i_1TLjMmI@2yhAcwB}rrQT3KKnIoUVWc_8FRBdg?(09dZX4RuW z<3xRX=T1wMcx3B9VG|reTQXhD>CokN%1fql_b(6(>>aU2by7voVlq*Y+J5}_apdM| zW>+qpWgZ^Nnz<9l(AX&w~7XUi)#=)IrrxBsLafAr{4>w%`MXbI4#0(yQx z>PC+S6Q9bVELegM4-Ed`S&V?E*A!(h`Tgrh)$CIIDo`xRoPc?6v}mx9Tbb zY>%+*tM~Nu4BBT?pY1%2c;(m5qwYwKK%{*{|C*c2Au4)ytaH%<-$r-uVAPa~{1efy z0|Q!L?0Aq?ajD)&JK*ppCubhZO+do$0R~S`C@A1V znKYyhVZ{KT6+H6!?T6bJEm`h6cMiZB{Kbay$cMYJz?__&$d@<+j=k{(;2U)uxx~aK z8`7+nU;heJjNj05owX4gt7^%;-q_e!0~~MBcFfFd01@E1UMSL6Ru;JvPcehUX*bX` zi%3gLPq*!Fm`tkCbVP5WYqkqn=u&&I#S;nFx$s~YBjG@kt&JIW^S~#HN=nk6Z0DSs zjPI4dC|xIg$P6&KVndmzj8)6qzwAdkS8!xzW}@TX;wFk?(^(qG?lhQ-hu9?Hl4;pd zj8(C;v`hd|W@BUWB|4y&XF188(%hlC@MTX(QZsDYbP(M-PAtb!Q`3Hw1P~{DZq&52 z=ncp3NQ^JT)7b^Lf4|}@X4m92a&o&64F?)=#6*nK0YC;tqFX+8e6=SSP8)Ebc6NNC zujG<6fWogS*)F*%yq7{5u(6fuCjx1BAJ)qgF4{seTt@+$RtlatqgRC)e#Ys=Vru#5O8v zS6A0MHPTOoAh&ccJ_toZSkMzrEie-l6@ZdXui=A`&Txn#6b~`un==b=xGL8I`wsZ~ z03w0!4a%Ya-ZBAhcc39n3B4GJL@(J!(Ua;AoBzRB{UoU#ulAIemq(KhJp)flF9}&C zM3C}9@crBQ@b3biq!8y{kFfBr*Z)QKpunNcqKgkLY#)%a+8e{Y;Ahmb_G#zc>Tk>- zP#ft`IDP^~#1y$N${&4r(8GsBPYTY&M`F>0=SFcbQbObuw2USGe0gNy^5tVaH3KmzO+EzwK)U0@&PKbQU-vlHj*x3eR~ga9XCu){9g9}!0o9MwjqLXo z;HnT^*PUOGn}!2F6E7n-0fo8f=K|S$uo!C1SBbLu^x_1boK@1e zEq@39{JlGLs4(QCC+tOvcZR9`ME7-27W@ zd?@|9nws%kDt7QM1hi#(w}9`j>8PkYM3Xse&W<342*whe$yTrZK7M}8%*=idAF?nrgKGL5 z@nHB9Y9*g$W^KsfC4c{F315ynf`1t;i}m+U+mXed-Q1+uY3ejqXJAnJc)Q!${a0T9 z*}v(a)5-=R6cVx-TEps%`#uJVs|F-h>hc2+l|R}W3c8R&$NXAzX=znQ}Yilaxc z>ECqW6{~+1rI*+mlcvmbznkT??Ciik&SWJj+DMg{$HBo`GBS54Yqmfr{HMg>&$dOy z+!z4}))>KYCx;1J{P5wISEslB-k|>)KPdeAo&PQ3aDioI26zUfxLh4s4WZzHkB=KY zx-Lm-JG=3{Iv<#x)S+3vM#*6Rjypt00<7!|!ii<~*;6yyp?RppoG;>`LtqR0n0bm_ z8EnC^)-zj5+9|QH9_c8Y{bIlJ*x#vi(oR_myi$#pt8$JLP)4uMq83idpMY4$IRW+d znJ<_SigkbTJRB0D>+c=w;2<(~1wS%9h))Pglmzwt3Aqg056zD>3oSwbkVw8L=#BsTyWSBeYXarQnNo5XZ)Vnsy- z&{9`NM}(^?v;x2YAkU}3fxmwXjow-&Cc%sE+yL!zM#{wT3)$dDV_4)*oFI_w)kRCv zZTrxJ#I+qrJ*q*C&v&3V=oU;eN%J3i-{JyswABRl7$G{oa5^1 zk?-T}jmBjesN-+n&Z28oP*5N`gk?lZdJMMj9!Nkh%2%%>sb!2p;tjU1MHQy(@V_eJ zzyA4eaUIGJ>cY#HFQ0-&wPkkSwtYKP$+_9_<^FC=T-5;YPk?H&rU*qk&=?~OO+!UsaG%1&=j+xQ}EAHCK*013s#Qd z7cG0rlW~eJlh|7A!c>ESb%&&+j7yR< zokh2=xuuWB_N(GYv0a>;9}ETMQGFr?B?OLzT0mL@{3F-~po5V6S4r_UQI7;8zD?X+ zr`@>kYadU>L6V&(81mcy+G`WF=+v#UE{ivlElc)ZdHwpVsi&af<_u1f-Q(nIp&;KO zSDB3(>Feu{elqi?x|$*1b-;7kIDxS?tFRGNc35 za(=pbUh>EhxPiDb_Wk~gmQ=K;Kv8S&eJCs}L}NwdC4hHAJiE_v#EqWlx4^d&$AT21 z1R093S)7m2Dew#uyrhVhcIEQx^zX>z=~9vACwneR0uK6Xxp4iKr|x=qL_zqX<;y%Z z6NaX7-@bhhCr+&+-7nPTM{YSuh&>|6k2FN1*V`wXswbT$%LzDR``2&6J~tkXx^AZrWE%g12$P}0QJwGKdT983FD~ZBb%?G{0!_e=my~Zeu%BUdV(&%1dz5N$__zp ztA}J=X=q&kCL$^-YB<^mFKzf20>)>(Kc7}pf}SjNfUCQH3e#2};blR5${Q^;r=u9U zu-b(3ORO=`-R;Dmwn3P5fzbQOjMA<$)puL4?YZz42uRC$v>GP^X25l(*gI6kGY_3YHvFTENjXo;Y5!(*rqueSK=l#^1ZUcV)2Q zJsVy?>RPj=4W1>G9X!ohTOQ(3jvf&yXz%I@-e(gD4*A6~()dERE64EfxdqI$l0^CLu~~qCS=YG7Q6^kSj?sZ99eb=7pIBAuYh@3)zq|<&KA!wDR}7(ZlREZMe*}2U6{au* zo_dbUY@=PXAF?MQ%4Zc+8VY`aiD|GU_w?!0{=6FNLGM%>`B5bAO_vUcqFJwc362W! zAZFEh7ZPL(CxsE{4}c&$NHE2pqt7Y9KViOxpdi|wuJ8mC2tLEc%8GkP%nhGlBIQy~ z=Oe6)pXk$ofHd@nkiu~Mm47z}qCjejnlYMLQ((%8;CH9MI;_X;j&s%Mr~B{`5dFHu zkAA7?_9{a75c-V*A_aJpL%irKnIs8f=%;}D_*-GGX zkW!?7%1-JDy0_`I0Tls?tt>3OHCE&0Ordr`J%~pC=(b`_Z?9oC(Yvy&>PSQpP|tQs zLkRzQU@E~StE;PnN4pq*R<~v`$%rBv<0RcX)&`F5Bxe;CkoW=V>hm|%ZEM%BcL2|Z zOw-q#GhehL81Iyf)8(yq?bED8;Nd(Lh>%J9WDRHKvf*f9-|*+j6!T z?eU?XjXRAe!L^YNB|^MK_>$h-B`lg0-xY!9nSW6pKlzx2j^Zc(@i%P)YM;tLCR(JC%DM4`v2CV)7@@L^JOv1+q*|};NxD)Vkrydju8kDgS z+2;I0`1}u+@waw=L{ie1kFt;z&wfjfq^p|&W@=vOo)Nwcy9ACLjYoF6{(A z$s;VB4Dtka!x+`LrNm5Z1EaHXJ-4kR$|15s{k8%G1ANv=(|IIQ<>? z3=^`TQBRyaX+n7P2yYH0BLF7)?I_3``mjODVI9cX15Oj>97oTdee?%2(jU2c)v88R z8i);=4&S#!j?vQ6;y4PT84>PIfAQi)1&P@=zn=zhN9V)cf=!ObuvtPv!&h-gM#eNU z8@y4vs$eTaw19PB2_;NN4x>;8)Irf!8;#KKhctYrkDlFGZHV$~453@HFv>z~NC}&Ba+K_)ik%43yGzfO)bVMIVIvyG$Ta7dd zW$FRv$?oQy9C~dqN0PVTySVA*28KogumS~#dc_K^9>{XbisoyIEvm3(d%I6mu~~BK75i z#viLc38|u<%-YBg(}v`&eKy^NO~(255O5i5|=Dr%fZ1u$@;76t)(O$oH4agSdVh;l0dhTX7 zcsI++%CG~5RWC~$qr0$u*eRuOdDQ1=h-U!lgk%lP@;$Zz7-!xnKR>bHcunioVmV8c$bs$H!yYfgNpXfa3&dI-Qb(CG@lu8orkLkx`}Vg zD<`#d*R7&NghMSt#}bKhS#6||?PL$#YlqyU&30}042E~wTSTFDapWDLJMh9u9JrH9 z4?t7r$G1ulH5-JDMP27+5F#+K$jZH9U|@is+BYQ^fBM3kjqN5KyXGL-U(?})=>f@G z;EO3D4w%GI@!ONXK;`x8*Zuh9IF-(vIdi*&$-Y7qZ_y9dfYK;z$2aiQ&`=r$ z*lm1QE%X45Y)a{HtAXH_0#N_uULp(xFm&Y1ODyj!t=Ic*%TixAL#Kg^SEytbS)>cF|QZ1z)Y>{u=y<<8TF0_DE)@A+GaKa!D z_aBOha(0YTcp1Cv%tgoQ3wvI?d`Y|t&DV3)gsCex9%Lut5A-lf#0&c8Kt&K}VWUYQ z+`Y3{5`+as!uaXDDc$Ss?TyB$DcK~j+GrLq6)8^F%uE7Z1A<_axb5y8J9Y>Pp7~X9 z1w0{jB4|Lo>p-gK;5dqoh*RO|6Mz2{h=XwUV)kL>ru{#?mwKLV&d$D=u#3j&+>u= z)p#C)EV4U`M}A336gq;f$L<;u#s3oy6XChEDDv43X3jfbn?dqStU8jgK46ost}*Hw zOtySkKYV%@A;?ZV*^iBrQz;pcw1nRK7~yPNAsLdr_2S{t_0IW&;Z57yXK4_#R69F z?-eB(Qc?2LkzBM+V{jE{$ICt1^A(kKnHDU=fzb1EFRbO)y@j^*mudNB8zG&wwzgt? zCWVlspfAF42hkfec(d!gGjfNa;Wv;c_yrO2FrJK}Ark!!FTs2M_19l|=Usq5&j;3d zORru`GIwqBzJ4BRv*ybVxF86!-=W~AR@MgBlJ4I8y{bVfb%%3dL%QI%5v z(#Jv%G&bY)2>=Yn3sR;n%2?R$|7a1NK*mP*RbVKH9`ti{wKCCm{gj*4a!;SQhd4H? zO9)#qr``hPkmfXL30mj`VF_N3j-eL55xC8f#ty9;{Mi#sOtg8ii`z#32-G3{>fZky z34oJ!9F!njFz^ZR@tNVsfdb&7G}PeSBtfkLB)ZPeroj0HECkk{(&rTrqbCSif=tZK z{R+zfybAG@1iR4In|cfDKpxpX~^CvXpHCmfN@ z2x8&|cowu8JUOr#P9lz6Q;J!$+R1`7OibG{{&3n(d{$E6(u&4d1bBe$yzi~|<3$w# z3I1>68YokKl{LRqd;On!y5$U!zHh!R78yG3sWDSLgnnzT`WsTKC|DyFI zf(qFG>({Tru5<8GW+R~>fu5XOCrxf!>P|R2cb|EZl~rwo2_1aZVsZr(1D;_=h9>qf z$j9kJrLnN|v11=Te1Nsv3hWdZSKf(ktMUVcM-atcR9u|!TCEfKpdDYxvzBz{0>LbB zh>6Y(zNZ7M2e!hf+rY8AYfmFKw$OeCK@O@26i76t5Kv{ar~AdzmMuBNKq(hRx#;Nc zN!~)w<~!kJv;jhC(SsedgaLswNGCM9W|4?lYR@)RZ zDHhKPxz^e`v(E=;2-ZqSt`v5ZLh(U%MCL+E0F9@E%xe#PfF>wCHI?%8A%x2qP?K=i zpN|3BPw(@ANsvkMbF7A%DS`6Rw~G-{7Y)b3xrsI)asPy~nB+nu;ZCoxf5@%j8nMK( zmgXyIX-9^J#4Otj;V%vF^HXl+=X`Jpm28K?Q)>`g{6|Dd$0-ET{h9VhXiLfh1PBrh z#)Nw4pV^IH^ znwl0ZT7*w`)X?x%rJ*kz*Te+G7I5Gzmmfi&1T{I*DKIEV1O7>L3>m!t9B%PzIqL@F z9Z1PT%#?iDo)L*vGLM6O<|mi*-|EMdG2>t4)8Bm4-|nFw%xuus7cW@?r{Dm8Ru2Xh zfppfxa@9M$$dG{&A6mHV5#L}Qg?qhrx-aTH}3J}n}@fklBp z4Os#E4*qx_CRpn(lMZE2_9M;&Z^5tYnabKs)ZMt9gbxY0R@BQQpjKf z5#djFiCQAGV4EY7(aqsfCiZ!{Xi>n4B|BEOoSq&Z*l8y7Xq`T8CY3UAd7=! zEr+$+HjE@#pvylwHD#H!{_3U*kc#xkxmQ|m@6dD}RYplo9jAbIFpoG1`4^JT>(!WR z6%`hO44^_o0uZLyX+bFqx0XJ!fDw#hko<=w3|0B>n+N{m5F;^Y{(ou;^8XbtFjQ7j zTC@Ow>pl~n^u!9&Ek6mV0i)jFr zIL)9(kG{3He@4zm>czm)!-N@u^8G}u+(OKj!OZQQwd>XWgiR|_Qw9S))hb7VuUu=( zp)?z^Z*#OEixA}*ofBcmhlw8?VLxoo&>&F0QXEPa$OdO;XWG@UEFBq(43R9h*w(V? zo!LH_XI&CQOAEwz|Czu1de578ZQr(S_xU%4RaI69Ftq)Wx6rO0la>ZTM+ec&JH%60 zR|mDmVYp}qB9S}8sbO!2D5E*uSCNg|TNN@x3WhvsX=yj?xp4IqEsPloA$?u)LHf#Jt_<_H9f1ZT@_X&7w^fpot&?L)aZ5Ctco=!O~z4J9h?3 z#i>*GP4Wx{ZM#2zhfBK~J85Y$Kp(_v^5!?9 z7md@nR9SG(+-5~q_*_y{v^TIcU#$@aA2)iW+}%SOcp(PKkAWgElv)8mf#)J;J3E4{ z12*GvbU!8EA~|tDiUQ zB-wzx7?16#cy=8Io!)B60Kb9bZ?mp7TZb?$Ef_8=FW1Vv65pp5S~)RX!dJpeW2bmK zBNZd8%dc}_dZh3jq;Q6LJK^W4aoJOmg~w5KpMp+D3uD}vUOgtVeEk0K#ucfmgMq7k zueF@r1UJ-9(XW!AhF5rw2Qb>jW02g#Lw0Cn6}DcIn%wAbw14VbC^{f9m??XirR*DW zw=P^?Yae&(prTfd%8vWW0r)PU98FBt8~t5X@lCtNh(tmf8WE9%h3fKoc*B`Mm|9u|6h&n6W-4h zYy`SH7;)og@7LDWVl$>DCScOn7^8Xi`4?r5H zp7sgT7d$+DU^UR>!?oY_?87*(ko4kyjhUBAQr@kT4l!O1?<2w=jXlgSpng3-q1^TK zG3kzxIZUZz#7isPIs%*w_(ia+_j;8NyZesfaJb`e99;l+NOBEJMBBhJ z{dxV$|KV>^CGN3H9Ne?VoS;c)4~uDFP7Ral#LWZ;p-5OLG~RlU(QLfRG3s0J&S? z!06`%8@tu!`*eD6T|2MFiHvvx`4wVLj$-! z7BPDY1=1wm*Oy61!UXG0I0LYEJ=IY)XtIEe>gyV3%mM-Wh@^-ygcYc8SxwuCSvAbL zfb*KKPBDy}b5+J<9(^kYt6nKbJ*3|vDq4#Rad6BMdeYw)r)ZuhpEF{rduI3KOY(`K z18PpRGi37830!P++6Are9Ade#p#e(m2<8W9H~=Hz+AjrJ@^K**C-Ve6c>=F7z&%i) z*=W`C=g)D{t59f`QBm#S+O}?~rQA%XaQ4rrfFq}3aXG*g>zkvt{$bCIu zo2zQT|d58ZU2&qq(QJ1Ad|iJ4EWtM_n$kL&wP&0Z$o%qP?)}u z2b%`$daGBighZ|49l4tQAlurtwa_Ixat@g~PDF^kz0-SY^rp=19ENVX79>x^0Hna3 zYL@uS%nf?Gyt1x2CQq>J)C=_0k!V_Tb6@`k^~hslXaGx%g~?ryAt~ibYF{C1G}L`OihfMMpdJ~%EPH#!Lc8-in=fPB zBPHlTAjA1KdPrabv}0(oVcz1K!@6)~--866Y;09>|p|H+eH+`ZD%b2i?RaOQvb zP+wO^v_Qag=r>Ey&7e_4hf|@LtjLwmv=^TOQ@<1{9!dytPZ8D`N3GuH=HtGIv&h0& zC?t&fWD`e(JbnnHwlj`3anq5a*D$Ny+pCMVf6-YG%P`x-f!=xq;RReZjjZwp*A^7| zVC+p3rWAys;R=Uy z$=L*)kXcNxI5cf$W=$^pF;ck{@U0#0v$j*7yK ziN3hI#Ec@y5g@W|w9LNVNY1O)?%9k_h}K!^%Q#*Omw~{52yp~IBW6)iiZBN3LgrC< z@u(HxmsO?P)LiMnJWXs{IUz8jI-z*D$> z5A({zYsc(6BB+d#Z)Y?WOIT5(c#r6=X6UVhKIax9-%?P<5`MW%l2b?-R-@m7!8;*|N?MLk6Xt0f% zUZZHYM0#PR9&U3%0bjv^$t`2GPU7Y%?96#^F&Iob{qTL9+-LS(`L0_(U&g39Lf3a| z9xlfU^VejQtmWnQ*C8Uf_*uhryxc(b=VzXd47m&)K8SKv8z6&izMK%AhrcC5Q_&H;d{li_wXp;nNf41)rU^Ixx2?`WZ?R=F_cws zlW!6e1p-UqW_7|%Nit@c8GaaotR=H{7u>pgmubFcpFKV`VyytCBS6Dt{$RnWX=rdv zF{f_ykZUN^Pa+-M94;X`y*?kZiy$xpF1z#9w1WHIGN!o`Q9Msz8K=R+ub|f0O`z!OMC=1p_4oHD(|X=PCPS9b9W&9_??kPKulG(vLpPWK@T2(Pu-d0_*P~W;C$C@H_e5zu(f@%D8@gWW%Z~*LfFQB%>G4$bRP( zwh4KTa8?5oE6!Q_8KNHqAx@ZfhE0&Pk?kQXV!#FVHn8+xF;*z!4*5{(7zXt;z%!#9 zVlG~J(#sf(a;sT1d}s7qaOcGBoG?D6R_Pp!W+TzwxqaIn%K=936T~{$t$INXqV2Kx zu9k#~luuRl=@T(zi|rYvnb>%|cnV4{ZtM~h6~*D)f?@WtZrHDh%M}_; zC1^SFu$pf4sGD5;{VgpQxX+f3?LPbHaXC-eS^&q^9nV0Gm~=_``1ttF=Tzqf!{KGr zeLAsUZz`I+tLg(+l{BkFI>2#jPfsA+LHF;|0}TcT=Ul4dl$I{I<}KT?u;`4gTX$vu z%ThD2o#ucy3`ZH>Sw7KJJR!#am6*0GDwctQH%mGMvEj^_&mo7eJ2^SI(HA@O2wnby zE2grFbkC<-f5)G}o32JhbyKmJ`=GYqdf*Td6e)6D+tU=Op$6 z{vbNsCx*00I3|E$%J+|aB#chQdgHARSYqH!zfN}$WI-HsZ%nU%1t1)@2#VS9oO$K6 zY;f4+<>hvmhJ=?uQ}bzGHTmUPqRXM>kV!K;Hq(5Y&5s=En`Nt3e6F1_;jKX4@Rh(cPaHeSIw&{aO;j;RG@p?letvbMQi7_j%60ImK%N_k%qg3WSUY zFigvp1}U3<0XR z;Y0^nrK1IDv9FH+u3M~z!@|OlP)o*Q6wA?pn!ZFEARrq4S2N)y8`a0}xT=Vq znF%GDbDU<}TYx(ziOWI&X%b6!E4_Rl7cJE6ex$?GOvJCCNh1omo9B4j&3%H`T5b(1 zX;*-ufU4|Hk11kg(&7ipiE9A#0&utEDmKwm)O%45a0!dvAm&SmNfTpZV>s{7Z>hA> z1)~|l7MmCxL>A1-%uF_IG;-Wr3Mh;Gb$TlQ3(68Mz34<0mZU~|x^W{W1hsHX$;BJs zbzitD@WFaOXBIMNKvN9EyVG+P=$Wh?z8pk}JkXdwavce;`V0IGp5tzGe;+r z1Ahf~+mVgu-xGua960Ooq#HLj=D5ydEj95eQ9vaDCXQM6)>bCha>r#R0Gpv^zJC20 zHxpvb;DUZss*l7CxsxSWLYzTr3f? z%OC7AhJFPElhXKr3VCvVcHPAAog_*A(_0x;pUASrqI{GKR~xHma>Nr2|D)9kyrlx z$@xF}8>iu%L>{A~rHw-FMzqR5-A@2Y78d;sZ^@42NKrBsY}t9$)zx)%=hFJW_w{MK z7LmZm!n`uGX*tLD_>wc=wnN znl}^5KBiC&e17)4GbQ56s*YMy^zp+c4=e`?rbkcRTuxLt>^lKQLCHMDt#bekAt52S zeuF7MI~2Db5@uFUPvYV^Y?>QAI$r4ReV9p*bz(&46tq|87^d&BQ?#D&+jT(roP>l! zSe0-+-UWbg1T){P@HM`i8B1dS=BA=7x7s5A1BK)x&d4mU6B7duINIXcTCk<)xd|SJ zU`tTez~v<9sR)%&b8uod0x$p+h9+)4q=xtMYhPcM_4iL;rs0f+nJ&q!c`mK%DR*tp zxptnEVHl5y+epwI5_cUU1Hmvy^o^J~MYN%3CU4T&=?1;909MlMiB=ChCoa{BLH|Kq zJBSvyy0@6j5^8)CRhh6>U?>GXXj6D0z#U-lrsU0m0qTzH=+%iygw#~g4nE?>#Z4?M zDuX{Fb1$6o48xhhpdXBRsDn9>H(^+VtfM!Z`l)7C-dRP=RwZAe9uhyE6=CFxb^vpc zG}$la2DuA1WnRB|r?~m$wc-?_f>7{Z&Zh2)&DV=>S6$8E;^Qkf6l|({W#PI3SJ49D zgFSf1xI-d+0GdnFg+1o?R@$)_Z2ECSz_a4{osZRvH(J`+;es^lJ34d@@BeWDN9vhX z4Rn%6jzCE1fA^*c2A;OgwS=zrE{qu0`r{Vv|M<=DJV{MZwJ{}j;01n>bV5r0XsqOg GYyS&lc$T05 diff --git a/docs/function/images/boot1way_801.png b/docs/function/images/boot1way_801.png index a012b07cb972b53b4f4f51951b63301f30ce5564..b72941fba1b4065ba37889edc8f48ca7af67435b 100644 GIT binary patch literal 25157 zcmeIacRbho|32=VPLT!;X^2$HiiomFMHwNhvKojeBYRgAS=kvyNtBSCog#ZR$jIzv zWbcvjyPhwdb9%qe`!l|`@9&@A?e=rKog-c^ujljm829^izpm^4@K8K0y^eZ2H3bF5 zx>F~QpP`^wVL(CgyARdx_>CrG!chu}OKVRZKdNHWH2Bq4lTL4GX|&&zb|u~3-+r^+ zNM#*Zu4Q^Enj%?F-sDjF3ICP~;i~WXH)Lh2K4@~7R;1;Ama95wT}OT7IPC_yKj>B} z9o42&9Asz~ZMFQgA_q@Z|nO!xBTLk6|G8dXnTI2c})Vic$H z;p4{~t3e^tc8NwegN87EBUf5ECARvP=ibc+`mnL@99Q1=EY6}*p>J$_ykKeZ$IOgP zquWUd(|J#}LZwLI0GZa-R!OR7ahvfS?|Sg$1CO}grF$|Z^MPD@_PlFsJQun89-}no z%{)#!FFPb8WPttKu76Bj;Jd-*%uO3N>Z&tS7H*)Rh+>#%=_<8kSh7pM`q^LW)-$tb z+My4g@ba99x$IP4v^mIUmMtJC=rm1UpGE3#6cmcue~_>7+VRI!-^WO$@TwODH4LUT~t^~s=a1^;9I$bDZaU|FMm>032uYp#qv7>Z?==)NacgyktBS{ z3-B@d9jq&e`=xk6%YfS`zezkQMVuu09g3@dxn$r9QR0sk-N^5VT1#97ZzL|sN@+*@ zaTGQA9TMBfS5b5$E~&VFVtK5{?{MKIUnPoqd5Flj?ZQre2Zi1*gZkHlVGs=tH~JKpeDU3#1|4V7BS$g=Ri8Y0vT8lURysOTXJ==B z|Bg+Y4(XQOkBeh%49D)=^iwJ3qNk?<7#J9w7H6*nl&N&G z?>KB+T3zilUUeks6RWF1V+tv?Ml9UV&#bd(b>j|9g6@YKzL!ZfKGHr6$tfvg)6Q1ZZqTjw*ZCCt}c!At1R}nF_GWmzU?o0P}N;j zR8+!fKagC)$RRRBBC)u>wi$gA8L2axe)^F}ABOz<_c=UpNl}rmo}TDv(I!#5iC5|A zL3u~uR#p+qM^s9$ZqR~Xw3kV(Hf zqA^w>@_hQ$tn6%`?fmR~e0(e{q}WI&|2%m-sX3n1;M%pp_IAbj(o0rW8MJTBA6Z`f z9Iu|FmJpVZa7{u&qGOa%)Q*bT!rqe^yHbXc!Hw4P`=>0c!7%^L2e2w*MN~W4xwyDg zU#ReGUF${}WD++%KCWj%OF?np!(LTg|7(slH!JIx9P1>#BICout$EFLb#)C5nMJC< z|NeVQYAV7FH4S^iP~D(qIIeK3UqDTNVQw-tC1tMDlRGdUi^!ivmY0`T+or>fUG)X) zo=lTAG3y~s8JT-y2l@C^sCe|sH&+-o5PK-!A?x<-V>ORN$v5D_5H$btDzj@&&W|FG zO;@VI=olDUvTpQ@_tY>6S;U=7)lbTs3eyY4E&A>huK)P)Mn&)eNh&6$NVBf@j#G_S zun(rj$1BRp1kJy>7hZU9_}clwru08QTU>ye`Odl>-2(%;ct197c2?FpMiHCJ2R!9; zwnIJMM_NtI&F{Ip3z)XML`Pqq9{P%XEh>teLuS7(S0n1P%CYsykB(Cc3N))%cL*Ue zsi>7(GIVuz>eBB%N*X2t;v1b?zec^N9!6;*o=FIr?j&N@|8WQtofbG>!PV}JZSwl{ z>lKvii%Lqa=;~_b*`;HlR99CgCMG&LIpI0uwQ@2Bwj%;r$Z!<$u(0Tn%7ergXD+L$ zsd=nP(g9xseMe6R(F#NcWi|e!%^Tw0weGp6>ehg+t+7D%o zF$!0fmY#iW`ZytB5bK4dUWWk@-lbf=rclY;w=3gXvzOH6m1-8|=3zpXSC1aO*)oU0 znK)){nyYiQvbhj@7-A|gH|t*4+Ex!*f0j`Jkh>mo-NMlWJs_?-QL-Et8L!d-m*EUEQa7 zd5#7Kae6Jq#d=5_D^{&l{ID0(&nS9rWl6CoJ(H+ino&bybH=rB!5h!?9KL2-GBY!m zm6dJSupz|=%czzOZ+v%`W{3BCWaj3^MmokL+r2UR>8YvB`HnfnM7t#RWtAvt6!LI! zC1ORhJfc*NmRd(c5r+wAEM!*q1Zz5jr^FK-oT7omyu0A ze)!-Clw|proUfaT3lGS>fOv}*X7HX*Z7vafA6#HkQ7y2titkpv_9VO zjm}8y!hn=)*dxWMm7QkNme0t@DCv&m$B0cd(3rX}fQ^qYO+87Q{7~7?up6$elx8k+ zUA?I(F4A&03YDlf&=OzwLqkIY0|P@s zdOA9ku>KlPU>N9`GpG?+Hb8~^SwSH$9B9Muayy_EfJeW$58NNNSK2o zo>UPsJ=omv{=L+;m*>;JAF2@^YI|8&_^-Eo`S>w)MtR+i z!w&PKB|%0LxXn^Yys8qfR`sFjYzv0dODg*3*48LYKH<6L`Sa&yW@g2aLN~fA-PX{D z9lpk%BZa?v_(9EdpgA*%b~h*Iz?+*Z+)9>ax_mQR?JA59Q&LhcuZplo_6+Hkzl{ui z&7s-GyLb2Q&d=&Pme$rtj!r@Bs$80{O*`JMWIm3Js;GGX*OjJ3#bZ16E%uS!)#?aA ztX9N;Gpim(L||OT->%^NlafD zrmqtjpGf<<>iErwc(2)~`;pFzg1dL`78IOyvZfcY=v}_NQ(adaov`%~!y$dIu|pxo z#0J@n4Wd^OyqfvW`kmXiZ0T-q-<89FA(#)r(!O-*Ql8yptK+m52gfz73xM$wkFoaF zky7n(E4j9*P78BSFWh()7#9O=v4)KuU`w^y02zt$Rj%)JkarhMDI_egn_mXqUPIq)vYSoSK}>mf}@VP%yxYjp?+!F_Uqz za+(rfCUK{E8;=S^?h39=c=ixt0_YfS-@dIEf)91^H{=kgek7`4wHiOMhGyJ~KB1;o zUly<*+q32CS7EDx2Y!AX-@fh5VZ|Hl7}CG}?*kJaua;!vN{h!{vu2H_mseV5Ce6Ba z>0UXnUk~78-njfG6Gr5%=-7mI;I2;W7OTM~ON6FFSE|#zk~A{8_U_#)D2Qp1wDQLF zg<=xgZDvL;M%M{A&RGZx=e+HbiZ=WH>A97aRdc3Eh!)aaEkE+sRStpo#l=|QuZzYn zT>TW+(a~YHIB!edSz6I0N*sWi*W2~Z`{``55X)g~?Pg!~S z$$X!dGwj@nq2$QfjhB{=VpspMYE^5Vy)~jMi*`8?HiU?w>VJ7vK|z7}xTNH*0ZCj3 z3++}Hks6JRat!L8VC|PCuEg(`j%nzqV(J{``eKm{kVx@$y*BD55{{qV{KA4>2o}+V zC!=%%6&01D6Bh5;R~L@{-!8twm3FxQEwx>7%t&V%X$Eybyf<##aHCDi9g{)+Ja+6@ zIKR>1%kS4pOG`JdM2cC?4_qZTfFWPKdR1C_(%$~ZTkB^?{Eg{G4KBZ}2;{@9x=1T% z6q=287EAjw0>tzqZ371zZX*gWlr4Z5$B(=I75hd7>m)@B`$^87EOG>2we!0Ne`F7z!r}>#LU%tHUN={C`{N8JW`@_Qs2P&vjW z^a~(~m=(EikPYENeV%mp?p@kTNJEtC83gR7UY6-nuUj|xIX>jy0_(-Mu6Xw9Fn$g; zwo_DoVPWj9rdC#rN3Lsja0p{O+c$jF#0vd`{H3d}zYnDWiDYYIgAtInQo`D>+n-fZ z*VeW)nAw&gGBG*%P}DwSEEPx=3lJMq;VQOy6A=c>3Pb;*Q~NRRKyW*E?vyaZlM|jw(NeZ{cIA(lQ5}aO zc&^h=J!iF!rSw07IQIGG?&^m>kkeF?w7=HW3}fz*s}5*nc)7cyY&>8#d+XM%!rPQf zxW>@X(1G)5rInQ;C>er+K4$_vph^v1Jm1&X2S|qECnXlek;vw(tgLHIX^2MwTJC=| z33al%zDAtH&DAIAM23fRxZ03{)P<}Dwr=0v^zvNlwnO@XP7huk9~~W)4d#5V981)Q zzZCHg5M7sx_%_GsuSk2d1F1FDp@&MEn$A<10i<`lyQ>h&tA~k5xdKEavHsfE_&G$5 zix)5Y`T0#vO}PzkLgkSH82Q_ZRjh_7nwZo7x|GKSV#x?r=}a{36JT&LF)@rvLy}I2 z=qY^szU6?;rJXwiNMIrvN`eDjn5H$WSD!k4+Q;3Ub$D1MUvKJP>U{at?!_3K z)y&jaj;A(81O@5g%fp{oDCGU{OR}iY+e!CVt{^Qu`(k`}|Gs@!-jLJ@N&wtzOdjtiu zGz$*y-ya(l6{VJN{>1y83=Bm}jLMvq&CSBRyym^NkCD04*W#1Uk}Pkfq@;ku@m%}9 zq(uC~b8Hf4zfR}+gqLZSy@P&rYNi&ZrmQ5Hc0_xAqk7H;ZWX)TD7m$DbEUkuOSNPVpehP{pDZgm(ZQHh?cmvOH zOv5(I@Z&Q>Lqh-s?nM<%O-;aIUtfhRr;GoADrgZN&K)mda+V9@>$}V3G}9aHn?KX( ziE>sgN!xMYOENMNd1y+HBiT&+m${OyfjccD!wQe)q{|~LtU+~AuqOKzhk7DFLHwzJ zeM$LqFZ61^eia3f#HvFf89i_cVdy@QfKVs?&jC)|*7?dqA0T&_K?Mj43C+#TZPCd`kdTTV#Vni{dLBJ-gwOE9@u{@{ zmZ1|4JEgDfG*kI!=nS+mP>cZ-beu%Aa2P#-sS3JrDVXz|zn>qVgFC@rR1m46Jct8~ z$#eCjN1$1Nda?5-u|g5rIb!7>3f|D~clprW)YGQey=vA_1&Z6;0)<&#P3l^fo#Y$ZrtsPtZg$|Ob__Co&V}5 z>;Y`@h0zkGeF27G6>qOv$G(vMTAf%*JEmU*bApXRAV!LbSBifBQ9=A`qLy%lGIqCm zq9$0LBPOjP4l^SNZ5lVH4Zpm)h=qrR*@BuVJiNKR@OBB`Y-{TP< z7N(j_e0+Qm33dva>!J+SRiHz<<{R@BK!q^k$(_&2%KFM{;``@*TvGnjscoWm7Nh<8 zM)NXF3}8Z{%#{=DmTXcox85W=m)pbZr#wqOaR5&0`D=f+yRC(Ywme&;8vU58qD zUSqv>zC&X}gZhGvoSfHyKmKsyq?0LMcoop|_Y(ZL%k5kHYrTpsjfe0-itB+o@n{6Y zRD+)-1beee`~oiHpUYhJpY-@qT>Mvh{U7AHcNpkZ)K_}sI!b3k;OZw#cFvU=#zs}* zgQ>hJ3GT_@r%3P@1AaB|;lqdC-rfW3cy*U6ZGFlbR(ayqQ7=)9EE&$Z6PUaHf5Z33 z(dFmor(UVaZ%YNtNA2bR7hdls4YS%W#Ti>G$>=>tRMg^QWYX$B!3b zhk0`A^M+RH-@y9TZ9olXA&&>X_AwVB+XEB~x3`asRd6@NtD9iWD=8`cN$l)2)6BMb z-e~+t#CD9R(P>fO(Ml5W4Pgzt7Br@Io}DEsHZquxl5V2*S-pBS_Rg_8Yn2$Kq@|m` ze6bj6IY*A7$OR%mjKrw^1fWSTP|kwQ3XBA`tME|hbFS@;9XodD6;)S5T{^b>P88eJ z*4ESDRc_t-ow*1A#1;VrEZlk9a$Vk-r%wfhg~@aQnbwGO7%O}E^5x1kTTl{loqZ)i zRTm>mPkK(rp{7~jl!tur^Wg|KQR|&^%(G{!R<8V-@2Fu*;J4v|rPd1vb0hON1_<*GYC)(s2}Ua5|F zKKcpJh+Xt&1;y+d8{5-a?CH5yN=gds?zwY@9Nn0v-h17*qIYv}^nWW0K%NEWLv09N zhW$BFe{of=;-Ky-wDReY^QX>>;Hk} zbKzVrCpB|zMxh8GePyGj3_Wz^{ClV^^cy$&M?^4e*ueZ(xr^xhs?LDmKA|&pn4z$? z{H}t+8r8$!Qvj^D9cUt}|H4J&gprXE0q4csI~jR1#P?X0e-Q}G1|E+->XUQsbVG7_g8>of2K@0mDlZaUCbumpIRfhxFD zK~P8tAF6iU7B9X+9QS1u{r>$syFC%GK9M(L^@~-Y9|W)>HZIG9%R*zRcs#-L6)euh z&yf&!xN>w6W_5@N%*250^7if9Pu!qCxqtn=w^X!w07M)LgV6c*Ug!oy=q4g+)Y=G! z6+a{RUP5XNyp5`4H9-(8E07ebdm|affe_T=)#Ru4;`ebe{C*ZzdtXk4}=AbW?2FgmaX_&6hWO8 zJ>A{a;YYZ6c~k5rzk}EZ?`DjW4eM4`a|R)dl7_JbiWigfe8E{(Ft zkVOm+AD>_?Y#|#~C^jHENc&jN?WL41#$wF}001f4mUW{9!hzw3r%*6~2e8gScmN9{ zX?l8l=b3fgp?w1AwKP*A4#{UFIL=155EtY~2~sfN#WVTv*RKVjen)w<$Dv@G!=TVG z2$%wc4-5?Ku7Nsf)mvNG)>eSEwd(d!tK{hukawfZKi)76bWXbJiBP`|?{9x|6J)Ze z=mIz^VCRgC43G$kSSWdUdBoO4wm4Q;_qM#e{44RLWyOp^KG6pzzeNx$B8uU)50V+h zf2%Gd&a$zw(Q|3u*D78*DI+sBH6;e_4TMaus^l%K`@yD#rKPNFFw6m3n?SbKTM}d- z2#y@*C8z!S_cx}`JEJ&Dk)?>bykWzoZzuf%_Mj9Uz98Z9Kul|XJTk>|g$0EDgprAf z&61$iO1X~fUbzB?z%Y};NFgLey@uZ z;=Oowz_IKbJw7cmsANGirCAN0Z&b!#Ubbrh4ZXp zCohUx-zfjn4~5voQ7*_%y`-pR;V&E&U)o?jeD8&-UITTn=Pw-R2t6hqgUQ7^V=y+< z_O2yM~wc>B|*DfAT;o4j{mrgcNs7-%$SbQYerJg|60D-)yvwGU85u-020 zqLL%3@%Y+TjH0e^MC_)h>aUk?d95^cNym}p`{w{Hj;L$=S4G;nSa#z59g=aA_SvffZ=0KM%ng?a)wVhM@~qN(-oYjhnb8yLTng4) zd#HMVT;LA13$AVKSL#?LA7D~_POqG6L3f6;JX=v?%yxa-$vp5lkseYe#*(o z$;nsv-nG z^5$RvntlKNeQ-1G?o_}UZ=(JEcWc`{{}zjis>EkCgc_FLYw7<-k*HnCc7SK}t2MN@ zCtaKNx#!tKJxJ+a5hdItBnVyYUxlM@-*m~>;@9`0qTZ-K?kpX~=cl#lPkt1IFkuy0 zcvMwci8A*YvQN98{k&Nt9mNbcXz3^atYd5TnDovCG`@!#^dJOb=sZ6j?u zJy8GQ&X$?iu(duY(3gPdpob-C=Uvs)Q_Z~o_3*W(+{t!>X+f-okczOJ1A?89f3PZoS}dx%M>m_(mOah zLhX0}WHSF8EMg?25G3_KvFyqcl+U46-NZx9&d$1(tf8iE1@DKr1bOKvdfBT}GKwZsvm!=fOQZIH=XC z3gZaN7R_f96BF1My}bsFZn*Wkr~`?84lyicji1EWhLZO73*_nw8JM!9G4)EtBjg5( zxF-qZ!iw)SN(z5pf#6=idBpl@qkLq`ATqXdB9aB-4RRX@;5Kl*Y!wFcgo(qYTm}^b zQCJr^7t|RTx8`O65Sk}l#U~rwgk0ml9hG+DGx;5j>G)Nk1TKQ@)s5^8US=OrDO8cc z30ZT!VQx+qyj(UKa0rNvR~~}rgKL4f4#mmG35+F2Z?6Jv^1bRv8w0PdJ8UqJmpr-0 zKPfAe{i+@Tw18RxItT`{Y228yF{Hy>1h`=LGLZ*RFbqbazP=u~!OX%UPz%}|#iA@8 z1Y7~Q3eb*PP=Jwe@PJE?9|v59Sq+qH!wXf8Gf0)SoWuvQ3WUi$!!`h!evF(_rwJUh zZl&~&9pPZtTwPrW+Y<5AQLNV{1=jC4%*o7r5taGEkLiLolFgrrM3nTZ)JD#nJ4-|w zxUtP!$7et4USvQaq4UJ&wm$~v0lvFl<(8dpnq?7>fWTR@92P^A*3d$*JN^{QddXvD z5Srm5K-BJ)dh2%z?ah(HE$EPS_*<7zy!&lPZ8YW$4UE*%(t<*%+W?ef;f>TwU~4}= ztWVJM3)sy>D#fA$m&W>Yuh{vb#nG8`ZxHLOye z^w=3TN>&Fj>;-_cGnuP>B&q1>>6wqCydj$)CS@Zt$^sp+AQnqW;`v3~>fH_{c_jC9EDoclPW4yMI z$7_~gSi#a^&54mq(%XES>i}7xkAgqE%p0mp-lR|XHZwr+a^J8AKnxNGM-D8$F8)OI z2jGvjsF|W$24?#ayih0x8ozwmeC~Z)o6fI;^aau*=`P|MH0j(TJp|RiIflZ*LLgTR zS{WV#0s24=xNw&b5d8!ph9JcD)I`En_z0}0udi=TP7b+71Cij56%14Ib!^!wyG*&Mj4{5Ej$;5fs5E+QOej|usc;% zRpqs%f(Zc9{wvW*!)I0z!VMGRX6Nr95|BNzMR~Ed_-4dk{f z?a`x0f4T5O)ty_nzDA(&-f<*ujODDUn38zm#eoflF3NxCDN_Cz{sFSBEi*jZg4 z2;S&M(h)Uj&4nnLmd2-73y%yaeiYm(@fg`!ZZh3+tSnJ83!H-S;qV>&S5*jy3@I+? z(Idu<8#nIUc_0V!)rg|5t}e#J=gAO=PJ3E*8FI3d^DSEOxIyz)$O&;0U zbJ}NvY8;er>5X6wQBcQoP-Z!97M1HTOp5}E^VNM%*k0w(4W zWF}C^)XMe!njfa%){EdgRFVgeQ67l1cJSU?~bzDZ;_4Oo*vy4{{% zgi_4!N$TmL*(qcJV+k^=A(WJWeey7t-Ceh1iWH(lRstyu(6ArTT{{2^Q>>zr-IOha?6Phys_uv?*B1qOJ5;Q(^ zH=^ zjv2>B`5w{+TNmx6v2SI;J3iak+2zl6hePdaDR34i$OuvL_}+pquO65#aXun4(ix)x zumD<*bq{hED$uw$Ne=-n@fdEj5M@MQH4m*IuopHqfFFlQZ(ko9*(dv_DpObou?FfG zcAx>@BEl9i32+Gn#mendhWQen-<3|+VoyH|WP*ATqdyD0rJ+IpF!alpv&_c<#`F{r z)Lj^`1r)?)35N+i=h@mM9dT08cNltE6%x)ScOuSX!#e(<#|KnVT8dx;vE&TEEeNB) zEIT!|;LJ>GzrvZB8EHj9c(N+!W>c^8h61SQ(X-q|8t+dk$j1zz2m#-AlB({>i8Z7q zZ|=MafAe(@!7zw+`cqR=qtu%$+aI}k^Jc>50IRHC;+c5016&mADI{W)zV#|#_ki|Y_76vEc{ zu)NU79Ex@j3@GD6QbM&d(OcJbn??-r%1;!jNP^?FPc$FwlN%*PCO;{c7hey&8?yt# z_`5`Q$dKUGxZxV6WOCSL?S!GPhegzIaWctyHM7`U?;aKbb{g5~gSWZ}6M<&dnHZTM zOg^x75QjQk3**SdLBbehim=^+0(b7-UBe6p^RY<8!Hc&7d98+9MXd(TDk#(d9l|U+ z`POX>q8ZD+PqnqRK>rot2l1DNz{uck=$vMnjFQR{q^bN+WxAGDRf)nIIeJCdqIXx0 z1R{69L9rbqqybq!XeL;KHXz@e$N4OoB1? zFyiG{_U|JUfhZ$_^4HhzPAXWmTb!TW-G$hXnenVM2-MnznIUXP&~|J=Lcw`Atr1o9 zLmKh7eM7C9>HJ)O5`;>EAx8*D8vvV-kRA3jMjOChJIkCDb@cW=g-4tOy8N?}hT*~l z`3@W1z{I2tMFO}K!YBnUpV;m=~FWA+e`Kc(lI~)@e2AWkc7` ztg($(w{&W-8L~>H{bB!udG6K3vh1U^y3y9y}tx80qMU32OjXXLS>E1Xo<+<^BOmeb z@DMr|&m~vbORhvZT8*?HT^_M6xQvtSCa)rVprHbGKbSG#Y@=e<)FN680m$~{9m z{AGY|b$M*s4@>r8kOZ9yAVzDetB2s7`8l5JR+eCnfEBQB(1@{-Iz0u=2OoQ$591ck zM?G#gIJgzGD_kBAf`U}%8}V;&KBTwpcsT_?Z?#l(G8V1ZkkmOVq0+_YYC>N5 zM^W#x%J3f*J?l->Whk~__LY>BR8a{e?++QmpShRAp+|HZgY6l+j6XH;LR&3DIxfJCA=FmatdJ> z-fCFMG!zvtY=Z?COac>pzeFuX=J~8+ z?4+m9y!x3vx{j5YX$n!eqUV85QGUT>kawZ*chu+=Gq`J99yJL8(2&~yHs|tN{AS8r zgrW?q83RupE5+=JHY_lD2`^v5*G%Rp|BU4#aKYmGUt3!4iK_x%5rQnyumC}pT*#kA zbZcp8fdM}}9Oed&zZkiR(a|i2S#vo#xzSiOI)(cCKWX0c4#TvE5NAo%Jg~u8`Dwog z<%&{4hHAs+&3pe&BK7A!BaR}pv?6pGCFON@ch|=$?O`sO9q)m?VXrF{HMJdZ;4fLh z9Z*PYVd5k3ku3R3c@;1*V91W`+u3u3aK8(@Wb1q20Mq~|(fX-b2;5|AtIscnxHVX? zKl{j1^*4Pw7L&EdXAA6-`vRVW=7dN@-Yzps#1ix%^GZhmy3D_o0z1+%wk2PdhW7*W zNjOdB=N%gLur_+b=J)snH?O89IN)*d;&U3|Ro%dm_yVx1d?=g=bePh=5<8u(Oqu~S zk#$R3`si1b5Mpng(_cZ{JY6a~WV&Kh*r@aIMjHNZQiRe;*1xL~y zv{%+jY|h@`Z|yc@yF3K33e6O3#xt8mPyi617@mas`ix4JYuBy;gaR&* zwxDvf@L`lTyxNfHhzSWlViKJ74aFg-+#z_`m+yH(Kt>teC#j7NAU$|PL_h%3K7k5o zzJ^da51_5);6X*IQ7|T7^XxMNi(!}5uL@&v?fsgQ*>VfhWFc#Ax|W*S+}c_k&V6{t z(Eq90$qNMyv04~*RCLbyak%0^L@p6xs6)>K>}JBU51$a>8^zv5e-F{Q2ll6?xR`{O z0b2wxoA?(jz<{?xSE?C^R!bMnpPX$YzdH&Zxd;KYrVKf);k){&H$XwmkYHM6DuVy5 zGKDOH9-n7{EoVH+3e?kS-+uf^7~JO3FacmsKq=%i7@$?2pD9LVUQrQ`HIJn)6|F=t z8x+~kJWwoyM@C-~sIt3b2O*tf6bLa<3$HKTW|Xc<&ddzaB0>-m7g=Xt5?N?o>t7l} z@xsYp8cY8-ZKIAWOVGapYz4DGkWm5{#q?{tG_b(Ve((qo-mF0*9y_4JRKBnn{Cfd7^sjl*XCrYGXYR?EDTazQye)d={6dSISDsoR&fMAS`gO zoIv}4EvuYxv>OmYp`~3^`sTYdOxiHs?=Z=&0|iayl&jD!ykyy3xsAC9^$V8WSsMp% z)=0VN6>CY+^CYVwdv^(J`3$bM=aGHlNGY}u@MjN99{v6O@CFbC422*Sh*>j49n{iT zM={t!;Mh|%^QAZJ*pUM~D=uC@)Ch@i@SjBHYaN89i)98H>KWn3cc}+a=eKP9B6N4F zbwM)ZzFMjV!s?cCCb4TPJ^lV1+SLM`Ad>zs8<79M-dWw56c`l5lJkfBIDEQOQ^8tp z&;IIf_gHR^M^w)F1G9p;`LkymyczbweJwYJWwYBqI^T)5{L{$!DYCUfw*TEY z--$vYMfU#t3x~t?8Wf*HRu@NW4zg0pa=L;Z2Bl;oH0tL?fA*aJ-M#*^uY9?c{r{C8 z92CI|A@n1|ax|QWZS*S0CV+Llkfqw^k&yreSYO?sYD~aIfsMxw$Ojm0B+05J=f(5R zqB@3x*wf$NjHEW*YR`S>Q0fGUkbJnbnlep5*tJ0>_GT2F1Jj;zMDp199#;XB5}+T^ ztosNRDJp$n#fny{DtSLQMzOdGVQ~jV@lr-rL0SeT71YhP>OA39AWw#n{B#=@S>qxi zQ9yv#seZuI1rPx4!Q{i!Q}AzMgXPbU$u?^2QeHWgSgwm^PUUBEf^e-Mw4aNX@`ePO zyExa6(s^1VKPsvn-IBl?r-8lkXmE1nAT>g|+av8$+PYc3(wBBOJNs2s)NsaOmS7*m z)WYEAaqpgg9^3Y?-D^Z06ho|?W}=+#i@q2;7%ho%%M7RwFxn3FoUJW_mC8akhuTZU z`Y@0l1B12Y^Kf;+Lu7=HMV(oGQd07*vVth7tBVj{8a2k_L`z#$4dJw!^Vt8W7X=z< zpddfkP`^}E^y@6mH7uwpO+5ji1U6OJCWuC0U*8&_`91bVd_3ak&YeT|0xFBSh3U2+ zKLmY#aI>h{;o(U+a&nWh%GsEusKgO*p07@d;_Zy8hNeZyP?~;PG@8Z|ZMrK%Q67n* zhdm{;y@P#t-ncnKp6II6g>go&2&oUcA15noZS(Z5&fkb}#?pZ87p^P}QhDjWHR%84 z>QBzdP?N%%81Cu{h=_1ln6qr$vDew@u<@7s4<8cDEMc44X83O%{7*gDQfl8(TCVJt z?qT{wlOnCU?~f8{SjL)`!|j*H$0#R_z{M6oR0ggC3G1J?l1AOOrw7Rh_}K(RRL4=G zbBVC+>zPzV6D!xB=)VpM3PL-aUXcMG97iOiHyH`e>Z&SvDkXtEVO8BPUvi?{kqvyw z$9_;8iwHht2wH3+GvNKuCvr&m}=6mOFXTP;qVNq@rlVb|~%XzYJ z9`b;@r>92pB{#wdbin3yxv)5NIj+T6(Zh$;sFZ-7h(j`iUpw{GI|`|4Nhra_JDixev&jypXkDwM4idItPH!1Xg>viY5{5)gtp>hOd(;D zI3WemG7T++sO7f^O8hQbT2{u!${L4y#?OqBl5(`5Wb+z?PaiKYLJ~tVK5!dZ*@DnG3)qqHpUmaf4KwMMfu<-c$` z4lV%j;2~IC=s((42hOW2D$;J)Kv>=37sYNB5)>>;r1A|j557dG&Rz|1O2??sTkO5D zp}e~K5d;YY1ftRF!W)-IqV`QqP1uylV-NW?Z_fUCGJ+ZQI`a5EA0HG@);2aaSFe5t zF5_r3d`#EuHZguwD|wbp&IIdC>~hd5X$IMV$jAbVzB3iaqU&ZrW2q0Q6AU*R*zql> zPvdccsS_u-fAP8AXrNK}I^`q9@-`ls74>TTA#dcbu42nD1=G zQxd)J2wg-Y1Ftzi4Z38!P)Yzlpj|H|Q?+{@4Yu;L7qKO=$CRBIK@Y{qhG5H#Ky}GO zQw82Mwt2OvqoTU86DMx`+NjGRwNStqqNfck_Blon)#;a($t61Ctc9F|LG=<50AR*z^qFJ;Lv{z^CDci!>hV=~qC9>RTV6UN9?MwSsm)9HY z2(lCq^i2D0nu!tL5$=e*g7hC%#{iT5?BIwp{bvV9`OWvJ{mWYw%aD7(dzY1$^KM;x z!l{6Ex45{@)SdFk-FXa#FE%mM2sWBV&Ma2*&^n*rk)4Qe!DW1QUB7D*>DCxt9Z4 zNVK)JK?8f}h3;M|Z?)-K$IYEYtdgPI{`c?Kf|#o^xA|K&pm}fBO^4kQR z=3gfz4I`6=`uQ>2-{#{vaYAK?=KEMR;>lHgIU0e^nOB5L46)6*&EyDU#@q25SPj6$ z0MhHX^To~hLls1X2-f0exOusbFY4f^NggjKGGyk}c#!D$4UXM)+r?udo? zGm`d8_&Fxc2x~a3VjPX2a9(|D5924mE%=Wy2KD$4Rm{+Ga}8@srPsDYxw0RiSDNS5 zD~K*^xtOZ#Y9aPaxq7UBb{e5y;w_%Rm<%o^v;r5iV%u{sbIoqj~t`|iS>tIntI z)ldivF8aLGqjxFDM2L4^u~eDR`9hM*VZ#Yt)<6%t)@sSoo<4MjmQtdvEVdPi<;xl1H=6N;c)TC zEP{k@si`r+;RRSIoSKmO@#Pcq2>E-9xQ8yH4MyJ?g9Z(90e0qbggKV_T<4`lqA?0; z1tD?YXFf)>PQG>Kt#}!$*{nThM5nHsqjLJRhe>c)6=#aId?;^mb2A34@x%)uvrbnG z3%d3KmwsovF|C|>o6h#w=V5l1MNh?o6|jW>Tx8&K<#Iz`lDmFu;|=y~_Ae;gkoaJ_h>4AbMdcM) zd74NrI&NZOf-^-x5n98$KkEjnaEqh}N(f1J`0r45RX!5U0SF?on}bLcpC7qhcp(l= zvLGnnsK69U`7jvH<~JK3RtV!W#LAI$hdhKPcmi1>oDnBip-Bgx*Uy|?i12`8a0uYY zA1DUF>^!nazSa?8EmXDq%y%XBA=W=b- zQ835=AmFZfL*?*qoTxVm4FdrsYV-34BDP?@y}(9dvbc5fb5Tu!btGgOw9dy=o?$EA z%!8!^`!n-#;4^sm@V8qwZMxC^<~P|f#Y2(zP;uaNit4hm=YSBfKY4k0*!Cx6BFj!A zU9nHHI-B7rG?h!DsGo3W$nA8JkdO&o3vNF+p)z5v^keC%3{5p|3 zBMQsVH#&Q!rTiSB#o$Vb6PANbpHY?)En<`~jba0Ll1P(i1LfEQU^6@p@gi-M>v$-p^8+YaSMKaSKnQ{dHT?1XLQ=-|LfgZZ??pP`=Z z?&;y!L+F4ZA?l{4BPgP;fIW(_0466!7s`0Dk>@vdT`tUQP)d?RKRc&Ru-p3 z&KPvg6PwETF#YDua*<+R@$3i=!68OiI;cku(1dWF!|0`(lVnI8_!U++cn%!I7q}Dc z;)1NKCuggIi}5pFKrp*#TY`a{gDV0&16KZ$nvQSSHTCiH#dM8aK>^C&s?HRIo|sBR zZI42?g!CVA_ zGw^5y+h;U?U&P9SaE0dB#QB8naP*PFpQAGjWf~l~T_HM7Wi>UC=rRO7L=iYL57Wka~xnVXq{53 zoEZv^Es_&B*vDMO5=0Bi6rf|)ylxaH5T4S&hXh}*#^}1ZxZo@$6)1z-K)=&aQ*SIj zt!`~*HakCFWAyn2i|fJd-o)C3O+jv7zz6R+7sQ$9%G<#Dyq$f0g20E&t}zFWE@%SP zm=m$3P7iVL)vJS}&ij>u%8U;K*6L7=COI!~?Aj&K$O8;8g9kXTukkoS6V!}I1?hA| zL<9nYI^YTHW>@s|p1+i?%7}MP;0>}i|5RY%mse3<{vEZ*CP`x;s+3ANA)Jt=K&?Ub zb{`vXB0X_ZXItc!6a__$Jf%m2gAVNm(;HlAgOh?dMuMNWO|wV69lo4Z|M^p*Pr;sB zd)S9?lpIp(J3xrJslgqzv?G;=YAnz)jtv1v!zRhIi*XU`u(c31q??4V~4u4B$+coKsN{|Fkb;1N=^ zna9#z!pI}hJU16Ra65Rocr(nyQqgtBhvV70;je=}Y>5*K9XjHO%!JwCq``J4PWZr? zUf;f{L9ziM0<8c|v1jB(uV&g4~$uaRv(2<4WD)RwC`L6e;~NGyV1RsP%E*J?zy6e2Hh1FJa)t7bcV) z9CC5w;DrlO=7%SMyJ4{nESAY-lLR8vvFnS$lrf4sY0iFBeFB6?G`s5LYuawb37yW1 z^8i;+R*?AM5P=0J=*;80ccuOO;L1{kVGYY4Kv`{ZPY(3RVs#|&$F!Z;VKVav978wi z%prbm$1w&N`K3``XK)V*D8&KlC%`X$ME&*QN;+KK#gtG7kyyux!$HtM3gCi<1eQdN z`L%oX>~X>#=wIkE=*mD!;H=3XE9U?wqMQi&3Nt@QR-~n2>y8>&O8F<_8mG+j)I!Vo1xa>&o%ZS|5^?B2AbLQU zn9zCg5NH7BqG@O}zx9(P4aI6_Sp{ueIw3M6r#5gvIcr$;&Fx%Y=QgdK&eDHKi_oGj zBwF=WP;Oy_8`*>Q$q4hkjcjZ^uxU=G8XFTAx90RpFu(Mz)Sq!Z`_X$Nv7Xk5ba zZr$d1}^8QWrMoOuRxfCI^71oLAY`Ylib@K*%R7-LQ5qYDn30=u=i#ud22jKSNyznByEysN3Cy+gLcb1sCOWKhARJ??@R^{E zQ$;lN@1?_}n@Ia4a9qD=X=kaDpn6QMk=_}f-5~;Z-3qu=GSUEdrj2M6r{a10l~M;u zb_gX#=H-(gShP0+)f?aeK@@JPh2^0;!__sp>(II6OgU1%`foI2 zVvCN}mh(F|FesS;@}dzTF+5zOgIgYV7OVODGthyO?f@=>jj6Ffib!T0DRwx(m9=kI zXfc*XLPA0t3S$!bI-Pn42k{tJNeWE_&mi|;1OSEOnkUPd#TD7FAfX}>g7_mmrj#Nw zBD!%58%9S)6jLh~w7*_B$Qr`ELGl}kGze4|xisH{cfuW44+1YJzyZ;TFr;Ce2xfI& z>#Rp!P;urFc&_&EFZujgRgf<}&0Ec7>@ZzHcPVfa2!-=lMmUL7q*OD=b4;?_&-aYJ zgsmWscLpXK(`P4qCVfbJM!s~8zT@);vC0Q>fBAKH}88bo1 zD;;`?IDFZtfh)SMx2r2!KeRI`JS?m!LE{MN8?zf6Ggv=Cn>NVgZuzFls7XT!*VvOqyb z2IWZ++>1@GE*`50(koB@5tP|2{VIN*H2%!I&0cp>WG36q&_VsK6fIVo%vxCOlz_fz z-{OeZ=1hgGkL?;Jc`=;I7!*|cYnY{c86Q4)5VscRCiY_)`FePaPEKMGUhyb!KskhE zoxw0`YGGkvX-Skbq&s}jiO?IM-KUd*mKZa@JH)~*k~jqoj17D&^&mXYw89SOMhn#_ zna@He-$77BWFEFp_P`e_XrY?qR6i$s`m`FC_;o?L@=Nz%|i=J)847>q$qlx1YkP^c8&hM01P<_spz}m8S2IT^OTGgqxLU%f>d7bO&O?FlcPC@A5tZ(<6K=pQlTICO^vGUUjEqq0o(m}Z z*54oR;POIKib@Gt3L8g{9eq$E@FU{T4MWU7$buwf^wX!Sabei+5%3ROai>2QQzVav z>21yXL99iP^`L#A^}xe}?T6%c;`s4-9L0?JO>3zWK6ua+oHOz=&d2r}i^+vQ5(6LD z9~Y8Xd5Jha7$-ktbyKcf$!|~_h46>nP*qa{Aejzmt)1JCn-;AIMfnPn3}7qt!Gp8t zT>y)L2c*j?LPr2U+-o~FY)D1`MZlzHCfHTrzqK%4zrQyU302f#5=&oU0zCp4ot z6kD1fM*%g66EV^5IfFZu5%+Ef8P7v4zr|? zHPd!m&XJr5Zx~MWfW2`NOdB!7h=kfWjtMq$R63Xojq8_jV8iOw+hAt|s#Aam7s@XP znWZkKCBj=9mYGs{DbThTC%QpqKsXJ0`0y*94}}LMC1r?_*wV)GHQ;%jkW+A&OS#U_ zl}EPwAbgEXw;ydSDbJ2Sc6%*5cf=|Y85C+bA}Yyy zdr&iEc$m`CVEEt2?WEF&7TwPm4vy^H#wa=^+PhAg;qeI?^MozE_Ys%}HbyBA*w^kj zO}IJ#v8pD?IO;F Ppg48n^zlT=3%C9s`$yB8 literal 24791 zcmeIac{rAB+dg_XO9M(2A}J|TDf3h+LZwuQQ05Gor%WYE2^EEeB%wm)GNwoph0J5- z44LO??bnUx>3M(e_r2e?*7wia*0Q}rhWoy+>%5NhIQD%%_T#*L>ZHs%N(M?2iL_4k z*bzk%X_*0uwA7noDSmQ+Ipz?FbTLHs$f2`#HNExrj$Zn+a|7M2N4B%xK1&xby=Qei z@44IuDlffcDZ)9z@1#6dbO=;5(KqD0v&S$x#kEF+KjO}wK&tzW<1X=?PLy8H5#o_X8TZz}HO z=TBBow{e;rzOU|)mNhe~#=2bntea`}%%j=e4C-eOOm>8IK6_Rod9<*oNImt6x|Eb_ zkJOHBLK2r$&60|IWh39eKS;b}d3Z^{$CP8X;B8l3MC1N ziH!V)Izj5WOfmDn}f_ce=v77Eg-jom^L z_M7&cy{GP4YCI&6BqK#HPW#7|QR(XIhaWZ-xLSpHusgdPpTNVz^VNJgiNiy_{F(*d z{{6cCB+^0F&G^xuapU)qNrrUoF+POjmasR8#J{hZ0&k&Cfq#>}yEpyy<9wP^>n)j< zkPNkQY4EEwYW$n@bWP4*KlWyO%G55jl=LIlgAIRR#fpEE4$`~+^<(0;i7Se_P4myF zUHq}|Uw6y4`04YPvbYHN{I_Y05`kG{;Z%>3@$mzkY~)dm#RY-PGaW!E4mb z&3T?hkNG*@Rt~h}*Vor`o_jf5Ynq++>64z0&JV1+cE0z?lP7T{#L_4-GbJV@9A`h{ zPPu6?IsM(c)vQTD^o;9u87n-13XsCHSNFYWn z^$LC;bvC;6d)Q%ItFN!G%k+Rubv}0NHksX2-lLFw!}n47jV(Fmv38febDeEG8Y)nSe^FYZ=Y z;NvYjig)hXWz;AwEltVFe)5SyX740IOw)NHA}B~L@?@|M3pLUcQ^a(vA?uO0FAuRH zM3I+0JUj$UYMw~C%r@oRuP0~i^ma@WX;sl(xOYh{m`#aWNp&5U9L?F+4P!)3OR8Fy%ki8^6vCy z&q=Vcg@0eC6r-xUcXLSw3JrM(yh zuT;GW3k}u8)wgRBZD}dXbQtsSpg>qYOHEbb%AOgmy}6Fj8L{u; zGPnE8i}9%``PbP`fBYa)0keqJF&kEto+HSlf|pBoNJwbdux>cE-aA;t`f5k8ZJO1u z!6@xph`cp)TxJ#)45Bu#b0^nqN06RMtF|!nbBw-P_=sCNJbtt2RXe-mj}H{+@D;?c zkVx-sj)ky|Km8GK|9-q}UjyQ-w>DLQ;{KyYqsP*hxfs4CDzWc$koMp^=b6b5?rX4Q zp~1o2ZgwN($~SJ@z@F`{h!M5!I%{idTfJiGPH*y_QtXax#q*Ildi1D_OnO=xf?u^Z zGb6+1cU^V5tts~j)XAn_XE=p;RFgVC-)BRPsYOyqx?J|U7f1l#8YwE4VzqQDv3eK7 ze^7ew+qX|T-298*?&9KN`&uvQmglm*PlAJyb@!x8Kh51o4z=WVp-=hwC=6vEKZZBS zw-x%24Gqc5$vseKJJn1^6~3x$-pDAnzw7M3zxws-7a&7|5wgvj(}pYZpFVwx{Kq1G zHK|D+5w?5xZtJce_tjC`uX!nQ3XOJ^7hc?Zmswl{uQGMGaG}nFhRuz-KF!+qkN3A^ z!n&-YV$RShc!0_8TQIbhIpgc@AMw&ai*~{#4^?K8x1R`?Nm+nO6hIk*YY7 zU0br}X8Ks1$8&0H9lCx*KiqS!l;Put5A8)k$`Nu8v3q9wKT`d@!u&=RRn^r_6K($W z>9)3JX5SgMZr!SB_tQNtYw}A&gELAZ{#cHQoL`?;6z#ix`!-%PJT}HVuIRk}aFy~TBd2MZ|eF&Gy&*1g1$A@pxLyEfEO9Pa}(cO8l0z0Jo7ft(6Ig^o@_e5hv9D!7cRZYm3x$9FT|)O zqn2EFYxWcSLCT|__%g$S?DQt1$>>c??$jIEj~g^(OneR8@B82Zk9yj3e(bxuoA*5f zlu3AnT=Pc#%L*CRBgp?E)?HRDpS(~fuq1JMMUSzDe4E$enc%N3?^!8RwEvsf(AWLn zKF2P-cTNA?GSZLd7tE%AMTS1&)eQ0T8-5zOhFQ$+l#SQH0xdESL?q+c`fT1OHT8HW zBSORPnUdLsG^=Q8t@qcKoIZUT8z7+&KY#BMo$TELZ1PemM&wGJkRqG$mid+c?$I(c zHHN3&UH(d6KT_$*iV!|B(tUpFNMd55rKKfmR8qC^BlR_i&A~GqLJVG?a&D}OjEE=- z5m&R}#!o*hgvpmndAxb^#*?0xM0f!HpQ0n3%R~Igi&w zpNRyEe zpU`|fC;@NbVZ1=rDT`E4IDVW~>iP5M6s%(6;xb+g4{db`;v=R@j&=j`*VU_6wY0QO zp7ah44NXl=?RkbjFb-DD*(WSqZ7iT1r=d>q69^>f@|o&QOE$cH`*sIAJ6`jJXF2KG zT$qyC+BIv^vD@*WDb>HwyrEf0qUkSZW@g-}v7;UkB^N=-DU>xgI|UTIhMp(GVJx;s z6+iBm{E>FHx2+9X<+ZFY`_UuB*V#CY`toxAMgdk<)`Y_4a&%-0fs}vq=1oJ*=LqT` z!MN`x8#Zjv@n7x7wRq=uJv{Ca1e-(|sbuzKpZ3kg_`KpB|K;=NDqLoob@ym*?JhUq z6km0k{^9=DhVyxgR_a2wvlCKCcV*nS;$k|fjLEK7Sp56<@1qJME4)lkPw!cJeM3H( zts>K9xXd}9J$u&5D(TfLqlR5)9PI6T>)s_|DO4Y$g1s-pMO;WSD7nujgZh~Y28CyG zzP2(}y*AmX5)TFC5LIU(9<;Tz?n<}#?LLDdI+Vib^$Ck1EGi0|eGZxAw)Xs{EHc0A z;}ds2Q7??@C68uS25^v~;)5QBKQ7D4(lQ;%>xRY&1qEAk^S{gG$`vcrvm7U|nOA7u z0o;_8#Xj@yVL;+B_EXJ?$CF-p;}SNzxw*N0ZA)`Az$mL*XGKiVAMgLTWiu0#m|cI< zPWeYxeGT>Bz9~?|L(4#R3Ke&#Fcy%JmIkUg|Hm~WujU5q(|#;qA_5$pn|p-yh@9LV z>JMdQmcYvP$~MGeoq2Hqf$N6nd-EoE-Y$0b_SV+%i3xiLhe94GVeczsLs~X(*f3Zu z+NY9jQulTML7o%`rUu|$lb|b)T)B=MB@dXGP~DySn-29}O`_h;$=N+SGnFv4{2tf- z{bglkXKXf+NUggj6s=z=#iW2-XE`}^hifUtUU-MSx83Hpm)AqJ{YYdccq7U2rezKe zQvm@1+bd>P;)j$wR^{K>#7U6W3e#oFmVtUtH8}Li{@!$O5B4!`E>>w7>1=p~dijl& z>kKPipO>9(Mf}95r;noe04o7YF#-;zr#sNpcC@xS4iyPX&J35mv+Ss=uSe`jT6Las zadD{@Umo;cgiu4aaM5}8Fi;{6&8No)Q1?*sgoT8JxVeh}s;VSSMtiC?9S4qrhdt&u zvYDNpKxnO8$H1kTRaa0D{k``D`x!6`=ee1&FAq6^7bV5TXZnAB1S@RBr(1p#R~~kV zAajTju)c(J&>ugKo}M1|6OU1@3we$#O_oLp#Va*YV^POZaNMZ@5Dd-C%#eS8x3I}o zhxc9z!-ibY3!G=J^78Vs=C&62`txc^fB}y+x@3P>$BGPrrDqS9%J0`NPD)Lsmtqn! zyZHU-p^dvv)}>j$>S4wPzIQlA{~VH>RyGXB7;5)ZJ2fZb@=qz$4^ zQ|xn|wi6Ug1@9^_7Jvc(YQaN>#K}K6+zdcQuzw#scmR&hn(ljQ@~;Ya)RS(ju*GvI zZ)z#VfdVFvlb!H<@a+jXIaTbH@Y&&%Pe@jTs8_!qdhg^i8#56(O~&o%_XJbDoG zO%>m^?I49YD5})hWTED)Vv2D!SR#v%*)~zpsnQ5}+=a7+g#{?By1KfqEo$vGCPS~# zJTjtA{62N@i$8B)M~6Q!$1%yhoScO^eCMK0v1+CV1qF>a?#s(qx@;MAnN@2y@4fh* zWTcHKu!`O2cmF=k=FI_d`&e0jM%(NJl9i&IJ)fF*#;CJ5`ZT9d+Pim~;x_>6rg?f6 zvdtVcIjMut8cfDx)Sxg2I+Yqj60HC?_+9tz45~HO1nl0auOSmu)}Z9sQA7jtdx*yX#tOti@2CP4HW95X#d@j1&m^H&T^B$xQssLECV=u}a z-JIZWmG9{gheGG3^%4GYnWK*@EPj$ttahDwXyb;7+7uC;{rLGiP@J19>5)vcqD^RE>t z8s#Et^}Yu1W{p1s#ssXE@&H6Y$%aZ`4&;6&@+9{ss-Ev*HwtuW67_wO^R(ijHWY$T zn74ddkvcXq0(=dAQapBitBLbrpkSRbYB|ZjAl8Zhqq=K`9ljwl(o;PIZDM?S=o`vV zWc@}$vr9@!0?P2;eMY*r9b5>NfE)1(U>N-5Nll6gQBS@}Oc__bxm06v2A`?%=Hm4m zHx3&ZMD_eW^lQE%(mE-P+;}44RMXfvcX~_}!3>!H3Q`i3DMF(Xv)jwTLF~l}-Kzqo z4Pq9p$H1*m1PQEWEiEmbovh5($a1W%tQ6$n=tM{n6yU4gQ10!G$gyg}4g)CEBssy5 zbKKPc$N((Fbz+Nlgt}y58&~*af8$9S?%fQb8O1bfqCH5<@#L~q>p{-y-dy?!3gqPI zh<6s$%B3(Fjz7iB%p4?WI@|2YJNmnRsyi+lm^0O=@^?&X!%NNVtRBeUq#7_Vl1UD?m^#{R7l5Pc($NO(-ly8(|PXXcBHQ&wao*q9jhRyptzA1q<(W{{)JCi6zb>WcUHZeH2B}j=yI#_q01m7 z57}&bU-l?4u%N4vL|U=gEW@SlYv>gf6?NwIlvd4`4Jc@8rkT1kHWPzwoJy}b-Ue11r>Jn1 zzf$&B=RMVY;lhOt8#h8!)1_ZZdOvrMg~>}g{MD;hqt?jOP&hyW!_<_bPF+HlOz2** z7)~rq&~(XQs2e>3WXsC#&V-Z=>~Yt990aJaFPIIx{*Z5t=`Cv6e2?r zZ&EA3O6&$vtIm5UcG$78s>v_0C%_Fr%8wd)355WlD@Mp+ZF!;eQa1z1pvh)ZlSCsm zJ~=5d)su)6OO`UeyGzu#n&xI;bCqPW3CL<%ktm(l*sF&1IYng-y z4Pg=augFJ6LF!@OvEw;z6cr|9zrJ^hp|+~(<5#b`QI1uU4E~f#9<|`sr>1ySlQ=ZB zK~j8te1d~j_aSe*f5Ab|#E+7#! z)o>aqZ)$3SP=?A6g`~W`Uft&U!P_ll4LO?suI=3HOjJ}gG$Bfeb{VS26 zp#j81$U+@jlob90;ClBL8`;Os{>k9L$w0om>S|%r^b&(72QEKIOdLXw=x+@YnjmOn zl7#i%IB1hl_JSo{G{|c zmqG>N9#?d9bd-~m162I`A!S}2f%X$Fy zN9weI5i!0@gpM!*F^cQL+c!<}zkmNmL4BykjOX}zMIB zgmHnws(P=&-+duuX>>^^{9gjXO%?KHcQ$4bdrN+$932_c?vNBh6YR**qrVy@SXmF* z6f6o`gEzuU41O?gfPO}Lh|~`u9&GG^I@*UMX4fEXQrjEygC9gDZJqD({-fu)eL`_W zKh#Mn#rS-6Fe%ENtW|?{iQ4|=B5KBb#wqZB3GQLa7kDSNFGAiQN+EZuGd`h~RamGv zR8o?Q%NY4qSXg*+Ozz~#5HWkA&9iai#TPLRSWqCVK=f{|LV(66xl?ClWw}h%HbOW1+1k1zyC8(&Vs*|T(N=ix+ z=jFLqI+aU181kUb90+CWZ07x z(|+1Lm(epH%|jB>9iudce?k7b+wy^0Q>wa@?CM0gRUE9#RA$r3tWd-Sz zD^?W5lBf`7dg(R^p6^@USsbm@V-)bHNp=rb^}TsbF|ShDxMBLONd zeoHl{WDgr#3tIA^d5}UZK?Uz-RFNDa;1HYm((DXtrz-*7bInuNz?iAh{Kh!3VMvBQ}~ntXfa?{ zhycVVB#jCiwA_M4ZGpf+qt)hfcYf*5Fw2z8%%d}t39pu4lYz$gKhe>wRnDA}l7swUn~2iz5+U6$wEFrT8NKLPl|Gk6kw-v1ME9X{6T==Y?IGT`XHs5! zc+(Aa6!NSmF$b#(=0p1+91VZc>>WfWBHmm3vSP~X@h;ANmp-_tF>O7XY?x5E^qST@ zcdiHeKNJTEEB)eP2=e?H9Os{IjvNyB1o z4REMY;$d?duK_{rSjCN7Xab_1FuE~ zC}|#x%d|Og8QBuG?XPZO;Xn^SEM!_VPtgW~7CzVFBdMjW?Sg(h!0KvNViC~@{#$8B zGgr+sj}O-aKza6+Qqje|6s)NA4NhbApweya?apYP{@tm1`&LLsCSO_8DY;1={t5uR zJ;Pyq2Y2IEEP8ABtIvTJhFVxMp}VbPs(I{OjXEEJ7}uapMrH`eT=95cdfbO~w^EKj zWD-mK7tra;UurL`IhW&AW@pE;JKEdZO#}mv_hpWS6zFt;?=N7WR{8Q(>zO`J#grJ} zmZ#v|se~v1H_zn6#Fn);fxlzmc!6!@`t|FCicsfzJ@Oj4g7Tpuc-xc(xj8C*$BrGx zxW>a2&zwP9{%YrU)@pZT`VIHVTiGAV-MbL@(HHy7VWPft(4@Q23_ ziba@`_DY0{eo_os8>Xk zJF_5={z9IO9OoAsy8!*>aJRvx10;byVA6LJ74KCM%<~V9Q>Zv_e}|9c?3>h7)6(a+ z3B}(6pU|&4pGQ`$x`pDfoJh_D#F;xB7Nl)qY56T!v=XZU1)6D|T!hh}WqaYp@j&Pc zXp`K#OKwE&KG59R)I`n9>h6TFi(9o3vfdlFZN|9{E{ z`Bn{e`Mb$_W-*RGTX-#mPL+&kNvwYDq#muflPJ)CHcl0u2;Gm%)8SKxqX9yT25Kpc z5)#w>hZh)ac?Z#GG%SC)4k|8+o}g(16BLL%t@~tv%B?6aq?!y(5EoAD2fKl1J*w9p z?>)w{cYs>t_ty=)y?%0**<>`+1|0GkrMMajY`FuI*ejmsKOpieBenJZ} zS<`3YQb>Lyk?(||?~^Q|`SCOeEVkIpbgwur{Fi;sAx8>sAw<~n1?~+%KQXZ-c54;S`~x{9k&Z4LQU;zY zS@EJ&@*P}q1IY(?ISjUi);ru;NNw`aq+|+{dc{`i3LsCHT;~Rp`oKA>S0G;V>UE< zWoYEcP-t!0$<2q5Mb18PaVKmc?0wCKi@#NOB>UkYKmDBTYin^!D;H`4Lr;VLycS$?IM;A0g7K z7#sIgYPyIUeBVY6g!%N8M0!iDg=PbqfbbdGLklNbbf{eD6rpqai15@vTO~w-6=+~9 zgovFFmtM!h66(r}E}bMK7J|?$ns;PSL(xQ9mH9Y0xR;3xqB8!omQL@)$ zSwXC7ZEZz+lx)8dd&L0J5en02Yk+No{jSCfpO9{_=w~Ttn3;M0@PYh(xqi(WqKyiy zq~S7S&BDT>sj11Div@<>xxB?{_@ z?jvM02Ei*_=^Ra$fq2oii?+7BOV-KIObUh&G}?>m6#ncPib5$ClS*>>yH>ndF%?Mt z+O=z^fnk`_bZu-#@mOa3v!^3qb%S`d<$%F=BpjVFJke{%5rFU#!o(FUW?yP7u!i;I z6QOwUPNWQF4f_ae4>(SHVOM1C=)m%KS91vp+QMOiRsv9@Aw(#n@|V^SsIMwl`Z`Alk~Aq^8&G(BdtZs2}eTm;Bf&v0m?y@j4Glx8W z{L*C#%$I_d{dmAdr&C_p*>m?;52KfW#*2h2n;gSp$%Zr`hS;mA#GXgNh*FLV0Sv8Z z?&)y^Ow^jL`Uh>B8k4k|0(K(EF#5grjAWAnw!dG!EJDBnumryWJ}~ABL_eNr!NGSy z)IJBa7I*F1Mc>z~j(%=3FS^{(`cn|Js%ty?0s$IXj}XOWp-s0Uzazxq3Lp=(!0zhA zNE>Zyco>uYA91VMAc?`SDelha>gqa}4DrYea2H(xtgJ)lZ|HJBbQ26f03lLs99xO> zAh&y5zrOfnOs!`q12kGj(+mP(LPCav<`l(gbl*&RKS97auXb1;6;k2d4&Q<#=z0ng z6S+EkFmV-r{MZtfem3gVPY9zM(x@UmO&lZ{)*u#qlihiePSCK0&Uhsg41;BMknf~5u8(8((u zxB-r%7G_KW#sSpNKy7PMwLjgxulNZJM%tU{7w!rU4g|dVTeBRZweH5SWlJ?0>h@bv zF}HcOHVIjEe$Qykf~(J>n?`EKu3c+bvA#Ymk{bQxfItO2)C+ES0-{&*Pb))Ht~Mqb zkUdg&crgQlHz#WC!OIabEt^?bc+;s@{{a5w;v!fNV02kxu>h_zggu##RC(pTuyvPT zj}(4zFZ5pp58cY8$Ns@sP`%;!M6Z$ma_Mupnehe7EzF?pf7iK1eKIU8tcD(>2Eof| z734_805tQy3_Se5t8!Poch_JTpeEInH=XinuCAWm19(d)$*s=&AtAF+7Ga;3&~!kW z`zASOe1Jihe$h>e2MbfXf}Gr!8v-1|6D7DMJ4#eMO{bA__#sRR^vuk&M3xk>G5~>x ziD;KX$c1>Vqu?96jt3C^hDFb*YYRvc)7Gt^lucb-@OMlB_YqVc_*sfVQZn0Rb|{oL zdpcp%YRgmF1><6xa65EhD0el_8X;qX(n1`s)ab(2O;4W!8Ql3tDXFTSNqvsR3l+6J zIaOnDVCBk{2-~wZ*KyebaxqOR(TWi;VL-+-XjFQog!YDWVir1+Xd40o`3Vse=#(!k zH!#ZstRTpQ9Y$YMKf~U`j)poJM-36FS8{Gb0p`O$@oJFv)oSoo_V| z7ypIqDetEy)H<7<0NBA`3hPm2=9!O8?0cBGW^)N#bN11n9P%luh$C7gphGCGjVOuL z$)v@CsbwYx8jm(As_lcvj|~Naz@6do%7mr8JXT%J<}yB;sJ=jerC5Z(B0W|&Ap8=8 z<0pu(dMp&KpD6U8oMfZx6>nj)ruTTLYgZmdF~RlDLWs)!^a%=-5wI{Y3*o{?rTcUF zn%)|g@0oYg{-Fh+v2p-q9F4JW@Gr^8kg>=DQhun%W9LJujeG9C^ z-BtU_mEXV!sdZc>OU5N@`EW93=KfgC;)vmU!bpTb}+O*M7jbA^4}WXGh}TPlvse5Je`t<0^V#7leSxla9_gDd=eh+bTGgST0YY_Yjqmz($C^ zPpw++-*|~sVE4Qi;9zIEPE)}`S7#H`Je52sF(0mrd;rZhLl|l9KY23!w7{R3tWn># zz%%}o0RGi3+Ja|=h|@p701Io!@87ZFuNdC&FY@xJh)+nw2QHT$AzM|)S-|xm@K#5i zW`hZubj=mH;LxE%;Dm&g`mZY_oXVIrp>wiad#a0Y2*85;xTOlwfUd{dEqu=*5fM{8 zNG~}ij|EM6(vM>)2)K^NAp~Z2@?3LZ2PDd{Q)X6XWd^GiqokPX4r0t5al07CTqbm>=!?Og0L z1%!l1m^Ng9B?ld6H^R>A!8itpF2Te8%F_Qc{t;dRkzrw(rxAzR+S-^pJOIlF9AQRN z^PruMk#TCIQj?0|z_Gs>79}@{$E^xxmz;|M`}I#Yz|zn^Jp2R|8>t3cgGiol|Mtb_ zLWjuR%-KjG2M5o* z2lt4tHz+A^7gt7|K5UbT2Pq&o=n)QW5-HHw*ccWPlz|#-=Zv_l!7rS6cg*BGfd>}- zFJx(4)ZbDhFjzKxR2Yt6;5T%HP37awb+1(7wX)V3{)pO#4337Ga8HuD>v4f__EGKe@3GJi&f9;)rdlPbckApqQ{i82Gac&CbslhX(VLdpZHeELcbv2gMhW^1Xa z;x4=!L_Wt2*5g4-rOL|7V?+GF5{rw84aQKf_mi97hJ(J^5CsGw4x?^e!6QRmh|3rx z;E!^$;W@NQ=E3Jr*f*gCekm@tv9iKQAiE{gr8Ra+{IKnl=ZROE<2q0?F?%CvuuN04 z5j@~I!Zd-?>FvKCVS4USr+BBpMJbv31MFKcXwJ3yYr>`F2nC*~=a~+v$Ya3rOO`AF z=+IJ82_Tdkb}Yn+GuwqISy6_GK{=bADA;K$xasNX!5h+f4lbQ{#VWNfAw@}J^veg9 z6}Yl5&x;4f^$uYYK91bI((pe>;^A_LFJaX$9iwchhNjP1#uo&DG>ex)EHFQ6@y9r~qkWI{RRrr5Cwf+B{@pZ>RXlFY9Pm^FR!}$Z%=Qz9;&Kmf3 zxa8>3a2Mt;P+)lu!F-2sAja{(U~GIXu?Z>RI{6ZP?$x8knQou?G1a%P(vASdf8jY~ zZFRb&GxXLo&pXm{V&sDcA}Np$ebrqLEF7B92405&rUz&t^hovZO2IydIZ0SVgcwaZ zMd6ue0eXY!_s_7f&tC!IDE#wWfdBn(;{DYRMn4P)7%!FQh3P+q$ht=NwIS^gLYZaz zUHJ5nFFtv1MK;jL9d()M*7Vsb`Y5jC<40|9*#xS#-S$72Ib(z@nKx!TGAFYLxgP*W z#B|Jg$UM*sFfxAd;QRO2mqF#ytsL3axhhD+ox*$PP7x7Ro7H?6_nLygmqR(W4rRj@ zXoMK8hfM@&9CnDS-+4eWVH6!487Zp8xcG|dTZ4YI;rVhqi=X7{w`4oM9v)j3d5?Pg zymp9*T60TFz=t+K5(sul*u#)!JHTllsRwt>TvUs^w?g3u$|q(Q#h@%)BY%+_u*X~p zfCljdo+Kdf5>=u#i(k7;x3Eyvw4pbLY63;mUp<{EuQOip_Wlm@{=!JRnfJS&pMPhe zd+^{v7zz^-5|SPPvGN0+;_*V_yQdypI&;w|lG>6f^bHzBVEBZjW5dda6~_n)Cha~H z7RnoKk#x=o3aV9*oY4^oT2tRf9uIV!d#5LQr$jqqgMM*KlfS~i@u4{{Y=`6A;HK$e6zUH9`kmw_0AKtal{jaLx~_I z2#Xe{lg0`b!839af&?9ufIWb`Z-4lF3BWu~Uy=JwWZ zK#Rs@7BY4nX2Fop;BLUUEbHN$RUdk0n@3cBeGD857;ih1;oL-9%B7n0xk18Zhli)< zMk%zwPuN(?jopX|mb&or)5b>+AL{Z2Ql6x=v9#PMh2iP&@0m$+4}wsXfS@oK@$2W$ zcmPSbjb5v#D~&FB_;&vNm+i)#fR)v_JU_qnPZiU5@d2@U+kJol=1vW?U04Z!w>@hv zLS;>TH{dTc9L#eARc2QtfT!Wo0Wl&_524LIa#Hz1z6atnDER`9W3{GReHD(gmjQT+ ziHYebKev*ss@Z+SjLRDwg%Gf_;fIH*@@CJov%hZrJx9QZU8OeN*m?R8ShIE3Bj|85 zy{0Z|Xla6v#>_FuNBn&|gTheoh>6_Mp7ZEzz+s$ZST1LC^d)(1l2 zT#B9jzrZmTl-^W$nDP{tGS!rP5ZUNL34 zK5c0$D=VNon1cn-f>BeG8C^Ykc((+0aUL9Fe#D?9j8+TnFl^Vgg+pLXl$3Iw6qmkA^fROZ~D zvnpjM^tDelm4F?kx#ilB45&T<$6p{hs;B|rVvmC65`f2S3SRwHD^_G;`fZ{H)Xkk5 zYIFisRIa$8&qJjr!ggPT++RNn4^PE3%oonMuc4BSdS|rvP3EjrV0C2+$$<7&gNb6$ zoSL2kthw+fpydYd#pxHvx5TueQH9W#KY5alu;pTM>i|2u9u}^GWdkE)x^Z;^@Bz@k z`Ozi2OSDt2?O&y^B=XcDI!|4&4h(riIrmjB41LOCJWV?t;6v2(>e0<@g-owBf;ow6meM?`IXB>c7{`15bkuG+<`cPmh6S` zUp3{3Q=q@Ia1iSkJ+=nj2Y^%tl7|_oFJs6X7Tuo1r<3yKIE$IYbe~8`QJC~|fx&_u ztt=gO!Ps?);0Gb?rq>)hG;$PDE>elL zNh}GWaAjkzL`xNIFNng8K!R{wI3hCGeRnqsAf>P4I*wY%{3{a&E#zZ57G{;t5}i^# zC^f)!J2O2MNBpCJrO|ULFD{OS8kS&m+S`!j5%bQO>n|I3t#G*J%j6}{! z)?^na>k+grFc$6zOo`KJwu)c1!oQGfDvHqaitC6(TkRJbqY@6I#^|3C%|0mjqUm$9 zsYSq>dc{vBDzj(#_wGG4YEG~9HDDiNOT@hS$nD?H&d%)I!_F>EK{yLRT8~oDFfere z{8>Uw##)PC$`j=&m*5f~bb6}r#L!8x-Ga!^_poTz@MvD%H@ZR!xfhcTB-c zq&(1qJSFcX<$={gO8!<~KhrojYm2Fr3Io1Cl%vj{KTjVq%z!}_!Yy&41^W3;n0q9o z1$1xF!!g6IHo1Y#gC+8CK=ty5pjY{IH2 zyg6RL6Asz{)x13@va`K?6oW|mdU~oIjG$_GVJbQlN2inEQAn(2qM^BTfFb!29ObM> zE?jsriuqbgB-@p1H}^+b6Cw$m9!PQcPcNZ%;H_P2jnPB@e2*2XfKkb_Jh%x6N4;y= z0ne&-Uj>QPYu6rEP=MbGSq(kRikdTuiWphA0ofGGjN^nd20k%jwueWH-b7>$(jX-3 zQV=NgchSxMJ(u?VmXoOlem^0_RuLo_9A+P-WuvaiX)X(BTnl5^E4Qg{wG-Q3nP z3LO7dw1nzq_9^s73vr}SJuVjo0#J4eJR4^u`TPh~jfSZTQ~3nv2jwIzs1Sg_OFLqA zaS~sJs^38WC>xFp*4s9&V>r-B%sma{(a*s_hN;Z3?~e%s6!t890RuSgskrNs^8>CbqIHV}f=Cu(f^~fq6qJsThQbafDlzazL1-l!nOEW4 zjFfVxBs4@-)fyB;_{=lG;DHh7(>&QFB%CoBU1JwBS}4NJ9fJvDNKMEp=oslG3h&Gs!RkmcMBXGK6h}ayON8FU(P2fJyw?5pgRRg2*RZ1Z z+5Ge8z(V_?F}v|G9zmoY1}Q-qM*90PGuH-_4{9;d-Uoro!0@c9c#S6EMWR#nsW!&j z4kM)8sbQ)m;tC0j=pCm7N|Bn1Dr7+m+;zH3rdvK8hq06A&v$fthvKXePy*lwC{2uL zlT%agwdqmmji}Uc=q2Q;prT15#{GJCM|of|MsCEpL=e0+)2uFIreo>SrC=XaCW)X! zJlnQCMV8E-n@uMVlcIwyylq<(2J1?*z4El|QKBFKY0r#$2{uqrPy~oO*j%|1TQP_k zfaS}VV>D09fIg-jKoW8cF>8(#URIMm-t38M28_jXQ8PmE(ZjEnEnSLi?B8eCXxHL3 zJZuGx6%h!agK~$ngrjGc5|MbcHE;OiWl!tvt$J!Wgr1`Et~6V=Pt8?fZUyw9L%0 zGdkURQ0Q<+omKJSBO9}!TcHwyPxOCtnLXnoe$`w3o5Lo*zPDC3C$p&J=ZHLkL(Wi7 za2w6d&95bkboegcvcZm#5t(_demcsLC2ICeL{m0}_^vm}yWj!Z-%C)Zx#_CM;uU7)A$lPtXkZ0pk`wPHTKRNvLKE=LH~CzkR)qvT=r}lp2vLeOeW?H91utl ztQfzMEnAsY}RQj}V}mey*pRhIP#l)aen zmuOtxzH_GwUBD84e@^8q7yyQ*mr&gPwWtVlIa_f~5W1^LbQpZXu`{QeY^)*EB8$96 zGLfPPFBz{fiW}*ztuz)eN<7U{h7V45j)E(uqPee6k{Bj(vsQJT%`*J{GzSK~5t-KsENZyiJ=5uj|szytZk&abTRey8L) zN@RNCTnQx5vSMmn16msDU^A~T-1Rv=_fB~&o*c_%&4`oM(_3hmPCMd&GCcrS_)oqA zHQ^8>dJVfUBu!YB;rwu?{xGS}E+l04!EH5^3!=4;MmBgFJSCZE!BSEAAZc7yc07O) zJj??6czMl0JVbBX6d(oxt`ORQ+WTx*gZME#hTh&eeF`UFj&eP+t{hK^ffuwj7!UTZ$Gb3*gkMFS~YMDrYI4>a& zb|WJbqVEI0uZmeCa%gM%5i897B5-qApV2Rx|l7~Iww)y^BRtU@J&9NezHDXhN@R>CNk97$Lb|5WFKIY zjK-@D4r^GGLbw`;?ZkOAe}ZW)BT{7cZa|AiGtAX6cc}q6;9dgm-D_%Zr=z2LQNNBD z{1g-vG)a_Vxzp6#JUCd$3thSifmRb5E9ErRn~F2FG;#FZs0l2A09SB~fCysFa<6gK zUPubt_Y4mW6;>*u`+y>hnu0PZGv#B9o`S0=dT)n`ewRJ>EM4Y_Fw>b585Yo-?Kr!` z)MZKySmuVSYlzG21Y(1ggCnX_BL>?%=M(1K0o~>>&V!tlVfIrBKD@9gx{PJAq74AW zI7SObYajxBUET9AfRrmYI`n1Uaw^7{5GLx$Hmkv8Q6V9fH5Fx{_G`+9vX0WWz*A{P zU4urM2+xCnfT)?d8+5Z7juQzXSBIIV*fJ{*iz{}Bm8#K;rFT`tbYmDFSAn>}NeIZt zkbidVip;n#-|;K5ku8|OJ$BRo=UP*E+i_v~O986X@~4Y_FT`t>K}G&2IwkSy1fDQJqjmfu^S5*MbuT?4S|4-8d@y2wX5c%?S=UM?G;)Y%QL+5YP@b z1sdJmNK=Rcl#DSSm+8YD0}bi6yn=$2IXPiSgcy;lP-c0o6$9kF%Z;NsYs-MkGGURa zmmUheVM(W3rKa}wwMq3J!_fZV(_c$!>_@);%i^W&P_nZdN1p=svSIV)w}87y)<8=2 zSMv_e&9B{2u9guY@$(rz$2*WVe1?Q)?G+Z12I083?F+%#GYy{XD9x3Ru3g6TJ9RTa z7Vs_)mIxlFpFjAG91}yKb7;-0BpIA;FuLSk9K&UofocR?LY$#?Q!n{)c-~W|<0~qeh&Be$ zmimPYA~rqaLQW&ck_1boCGK=C>Fs?I9Bl3VQldCsGJ0&!&3qRlBQt`b*{rL%8a#Rb zq~uIUP4r;y)QOIFV?Vm=r=5lrr_bKnPV8Yg^h==I5)%;_URVf>1RB)6jkme{v82Qt zY1A}xqyiHHgIDz8RgzYe!^@-DNridEX+SunxY)d0oO6KP1BvwfDkm@J(@IUW$&6l zJKlG0t0NThZ%8%@ym-U@Ca;A*@vawGvxTE3BtB!%OBKd(c zTkjBLJ85$guA-_+h1D%js~UEy(dRkvV5!w&N%+tc*eJD@MPeGIShWSH9E$A>tN=(j zwlKDSXORFW0#i_xkw7YhQ7H-Yq20?agTY@#33|qxf;k3r6k_O9G*SUY?EoS!IK>Ah ztcpR{1b4dypiyltHHIPucd`utIkMj6$_vBB;roJ$YSu~taG>ifIXkY6=TLF3f^Y=2 z<;SFMZ?A7Vl=N#Fy~Lzh5tzVXL9Q4~OBOtUKxC7?`xZjrs4ryW2{a^YtECA}=)la(#1R7-kklPUgGg1xNc@mEA8|e@4&lZBRs?Yq zCsK@M&&@z!LdGe#_m3^scG=z+q1iyyJiX@7@hS`i6>k-U36S4Rr;vErOJohYU=2y#Lghf zCNwPcHo&bgZh^xqaSj%7!WOYwaH(`}%!EMzoUr2A(KRrU_dd%2(*;;hvi{*Y`dtg6 zs5#8o0AlDToM;P$PH@+Gx)UElLHO2x0{Q7|cX_8N9&i5>q5ge<^1u z^veeCxjM_g>2=uV83I#igwjq~a>Yc7;6(6TZGytW)vkooXxhJSK^Gs)1o^UEO)K1S zVi1uDHGhH-y3x3BBP^MC4q)6DI(;ufP$tOU;lt=q4W&T&b4D=)d#eUMpTw;CT80A# zxbdTn(*2OcOh9k3+9g+VuK->c#bp9kuywD5fe*6S+SRM8-CECwOY(bGrHv^oEDr-vD6Xnh>R z+LgT*YA`AW@CtB=kVW!E|HcL2L&honna_-Drt&_C*QgsnwOCvnn)3z$2HI|~S?V&m zsb!<1Yvi3`mlO7z;u@_&9P;{wLbWf8mxpb;QS4rJEpqp+UHJwFBw(9M^V%vpik>`C z&%!)e9$qD6#?5Oluzf7cf455QqX*mBVIiaB_bcs*ll+zl+_9uexj8>Ch6B|hC8wE1 zGjObflN7``LMY;&K;Lw(=fQhiN%rW;Be7B! GUH>nM5AAON diff --git a/docs/function/randtest2.html b/docs/function/randtest2.html index 831a0840..37e99da8 100644 --- a/docs/function/randtest2.html +++ b/docs/function/randtest2.html @@ -152,9 +152,9 @@

Demonstration 1

@(x, y) log (var (y) ./ var (x)))

Produces the following output

-
pval = 0.3586
-pval = 0.2778
-pval = 0.31965
+
pval = 0.3562
+                                    pval = 0.277
+                                    pval = 0.30584

Demonstration 2

@@ -184,8 +184,8 @@

Demonstration 2

Produces the following output

pval = 0.12891
-pval = 0.037109
-pval = 0.51172
+ pval = 0.037109 + pval = 0.51172

Demonstration 3

@@ -207,8 +207,8 @@

Demonstration 3

pval = randtest2 ([X GX], [Y GY], false, 5000)

Produces the following output

-
pval = 0.0010532
-pval =   0.2
+
pval = 0.0008
+                                    pval =   0.2

Demonstration 4

@@ -230,8 +230,8 @@

Demonstration 4

pval = randtest2 ([X GX], [Y GY], true, 5000)

Produces the following output

-
pval = 0.0014
-pval =  0.25
+
pval = 0.0012
+                                    pval =  0.25

Demonstration 5

@@ -252,7 +252,7 @@

Demonstration 5

pval = randtest2([X, GX], [Y, GY], false)

Produces the following output

-
pval = 0.0758
+
pval = 0.0702

Package: statistics-resampling

diff --git a/docs/function/sampszcalc.html b/docs/function/sampszcalc.html index c098293f..7e04f22b 100644 --- a/docs/function/sampszcalc.html +++ b/docs/function/sampszcalc.html @@ -206,9 +206,9 @@

Demonstration 6

N_corrected = sampszcalc ('t2', STATS_STD.estimate, 0.80, 0.05, 2, DEFF)

Produces the following output

Cohen's d = 1.72
-N =     7
-DEFF = 3.5527
-N_corrected =    23
+ N = 7 + DEFF = 3.5527 + N_corrected = 23

Package: statistics-resampling