Skip to content

Latest commit

 

History

History
138 lines (126 loc) · 9.08 KB

README.md

File metadata and controls

138 lines (126 loc) · 9.08 KB

Hitman-Hashes

Resources Badge Completion Badge Formats Badge Alpha Badge H1 Badge H2 Badge H3 Badge Beta Badge Sa Badge Unknown Badge

Statistics

Show table
File Type Total Resources Correct Paths Correct Percentage Hints Hint Percentage
AIBB 1 1 100.00% 0 0.00%
AIBX 1 1 100.00% 0 0.00%
AIBZ 5 5 100.00% 0 0.00%
AIRG 52 52 100.00% 0 0.00%
ALOC 26354 16629 63.10% 0 0.00%
ASEB 5851 2031 34.71% 0 0.00%
ASET 13532 6539 48.32% 0 0.00%
ASVA 277 267 96.39% 9 3.25%
ATMD 17038 6458 37.90% 0 0.00%
BMSK 59 38 64.41% 0 0.00%
BORG 7014 2722 38.81% 0 0.00%
BOXC 41 41 100.00% 0 0.00%
CBLU 2646 2646 100.00% 0 0.00%
CLNG 4 0 0.00% 0 0.00%
CPPT 2646 2646 100.00% 0 0.00%
CRMD 56 50 89.29% 1 1.79%
DITL 4 0 0.00% 0 0.00%
DLGE 49653 46769 94.19% 2371 4.78%
DSWB 5 0 0.00% 5 100.00%
ECPB 2861 0 0.00% 0 0.00%
ECPT 2861 0 0.00% 0 0.00%
ENUM 2 1 50.00% 1 50.00%
ERES 273 267 97.80% 3 1.10%
FXAC 4 4 100.00% 0 0.00%
FXAS 351160 350464 99.80% 0 0.00%
GFXF 41 41 100.00% 0 0.00%
GFXI 12066 9417 78.05% 1438 11.92%
GFXV 321 119 37.07% 196 61.06%
GIDX 1 1 100.00% 0 0.00%
HIKC 2 2 100.00% 0 0.00%
JSON 3160 1514 47.91% 1407 44.53%
LINE 32233 25966 80.56% 1945 6.03%
LOCM 16 16 100.00% 0 0.00%
LOCR 9638 6543 67.89% 506 5.25%
MATB 5517 4913 89.05% 576 10.44%
MATE 1106 834 75.41% 0 0.00%
MATI 18759 17549 93.55% 1119 5.97%
MATT 5516 4912 89.05% 576 10.44%
MJBA 19716 7363 37.35% 0 0.00%
MRTN 2264 1074 47.44% 0 0.00%
MRTR 854 85 9.95% 0 0.00%
NAVP 80 78 97.50% 1 1.25%
ORES 9 7 77.78% 0 0.00%
PREL 144 144 100.00% 0 0.00%
PRIM 42931 22084 51.44% 228 0.53%
REPO 2 2 100.00% 0 0.00%
RTLV 145 0 0.00% 137 94.48%
SCDA 877 818 93.27% 0 0.00%
SDEF 503 503 100.00% 0 0.00%
TBLU 56412 41023 72.72% 14978 26.55%
TELI 65278 34674 53.12% 0 0.00%
TEMP 86083 60164 69.89% 25306 29.40%
TEXD 43593 32816 75.28% 9301 21.34%
TEXT 44382 33164 74.72% 9987 22.50%
UICB 393 393 100.00% 0 0.00%
UICT 393 393 100.00% 0 0.00%
VIDB 99 0 0.00% 94 94.95%
VTXD 11307 8695 76.90% 0 0.00%
WBNK 845 819 96.92% 0 0.00%
WMDA 9 9 100.00% 0 0.00%
WSGB 144 133 92.36% 11 7.64%
WSGT 144 133 92.36% 11 7.64%
WSWB 61 47 77.05% 14 22.95%
WSWT 66 47 71.21% 19 28.79%
WWEM 381614 271539 71.16% 85030 22.28%
WWES 187149 187149 100.00% 0 0.00%
WWEV 26135 19830 75.88% 6247 23.90%
WWFX 17082 17077 99.97% 0 0.00%
YSHP 4 3 75.00% 1 25.00%

Game flags

Game Bit Representation (Binary)
Alpha 0b000001
H1 0b000010
H2 0b000100
H3 0b001000
Beta 0b010000
SA 0b100000
Unknown 0b1000000

Scripts

This repository contains four main scripts merge.py, add_paths.py, add_new_hashes.py and extract_hashes.py. They must be ran from the repository's root directory like python ./scripts/add_paths.py.

merge.py

Generates hash_list.txt. Takes a version number as an argument and optionally --game (separate games by spaces if you wish to include multiple). Example: python ./scripts/merge.py 0 or python ./scripts/merge.py 0 --game h1 h2.

add_paths.py

Adds paths to their assoicated hashes within the path folder's JSON files.

Defaults to reading a file called new_paths.txt in the repository's root directory which needs to contain data structured like this (resource type is optional, although it will make adding paths slightly slower if omitted):

000A4FB9B5FDAB19.WSGT,[assembly:/sound/wwise/exportedwwisedata/states/levelspecific_states/paris/fashionshowmusic_level_state.wwisestategroup].pc_entitytype
004B66043E12A8E3.WSGB,[assembly:/sound/wwise/exportedwwisedata/states/levelspecific_states/paris/fashionshowmusic_level_state.wwisestategroup].pc_entityblueprint
005EA1E72FC62DEC.WSGT,[assembly:/sound/wwise/exportedwwisedata/states/levelspecific_states/paris/paris_rain_puddle_state.wwisestategroup].pc_entitytype
0054C5081030A3D0.WSGB,[assembly:/sound/wwise/exportedwwisedata/states/levelspecific_states/paris/paris_rain_puddle_state.wwisestategroup].pc_entityblueprint

add_new_hashes.py

Adds new hashes into the JSON files.

Requires a new_hashes.txt file in the repository's root directory which contains data structured like:

000A4FB9B5FDAB19.WSGT:h3
004B66043E12A8E3.WSGB:h3
005EA1E72FC62DEC.WSGT:h3
0054C5081030A3D0.WSGB:h3
003B993A25498AE6.AIBB:h2,h3

Possible games are: alpha, h1, h2, h3, beta and sa.

extract_hashes.py

Extracts a list of hashes from RPKG files into a text file. This is for use with the add_new_hashes.py script. Example: python .\scripts\extract_hashes.py --input C:\Epic\HITMAN3\Runtime --game h3.