diff --git a/cmake/install_helpers.cmake b/cmake/install_helpers.cmake index 7165cad0c2b..3099895a8b0 100644 --- a/cmake/install_helpers.cmake +++ b/cmake/install_helpers.cmake @@ -82,6 +82,7 @@ function(ginkgo_install) DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}" COMPONENT Ginkgo_Development FILES_MATCHING PATTERN "*.hpp" + PATTERN "*.h" # C API header ) install(DIRECTORY "${Ginkgo_BINARY_DIR}/include/" DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}" diff --git a/core/CMakeLists.txt b/core/CMakeLists.txt index 14ae6ce6592..292cce89902 100644 --- a/core/CMakeLists.txt +++ b/core/CMakeLists.txt @@ -34,6 +34,7 @@ target_sources(${ginkgo_core} base/segmented_array.cpp base/timer.cpp base/version.cpp + c_api.cpp config/config.cpp config/config_helper.cpp config/property_tree.cpp diff --git a/core/c_api.cpp b/core/c_api.cpp new file mode 100644 index 00000000000..8b3ff0470b3 --- /dev/null +++ b/core/c_api.cpp @@ -0,0 +1,491 @@ +// SPDX-FileCopyrightText: 2017 - 2024 The Ginkgo authors +// +// SPDX-License-Identifier: BSD-3-Clause + +#include <../include/ginkgo/c_api.h> +#include +#include +#include +#include +#include +#include +#include + + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* ---------------------------------------------------------------------- + * C memory management + * ---------------------------------------------------------------------- */ +void c_char_ptr_free(char* ptr) { delete[] ptr; } + +/* ---------------------------------------------------------------------- + * Library functions for retrieving configuration information in GINKGO + * ---------------------------------------------------------------------- */ +void ginkgo_version_get() +{ + std::cout << gko::version_info::get() << std::endl; +} + +/* ---------------------------------------------------------------------- + * Library functions for other types in GINKGO + * ---------------------------------------------------------------------- */ +gko_dim2_st ginkgo_dim2_create(size_t rows, size_t cols) +{ + return gko_dim2_st{rows, cols}; +} +size_t ginkgo_dim2_rows_get(gko_dim2_st dim) { return dim.rows; } +size_t ginkgo_dim2_cols_get(gko_dim2_st dim) { return dim.cols; } + +/* ---------------------------------------------------------------------- + * Library functions for executors (Creation, Getters) in GINKGO + * ---------------------------------------------------------------------- */ +struct gko_executor_st { + std::shared_ptr shared_ptr; +}; + +void ginkgo_executor_delete(gko_executor exec_st_ptr) { delete exec_st_ptr; } + +gko_executor ginkgo_executor_get_master(gko_executor exec_st_ptr) +{ + return new gko_executor_st{exec_st_ptr->shared_ptr->get_master()}; +} + +bool ginkgo_executor_memory_accessible(gko_executor exec_st_ptr, + gko_executor other_exec_st_ptr) +{ + return exec_st_ptr->shared_ptr->memory_accessible( + other_exec_st_ptr->shared_ptr); +} + +void ginkgo_executor_synchronize(gko_executor exec_st_ptr) +{ + exec_st_ptr->shared_ptr->synchronize(); +} + +//---------------------------- CPU ----------------------------- +gko_executor ginkgo_executor_omp_create() +{ + return new gko_executor_st{gko::OmpExecutor::create()}; +} + +gko_executor ginkgo_executor_reference_create() +{ + return new gko_executor_st{gko::ReferenceExecutor::create()}; +} + +size_t ginkgo_executor_cpu_get_num_cores(gko_executor exec_st_ptr) +{ + if (auto omp_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return omp_exec->get_num_cores(); + } else if (auto ref_exec = + std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return ref_exec->get_num_cores(); + } else { + return 0; + } +} + +size_t ginkgo_executor_cpu_get_num_threads_per_core(gko_executor exec_st_ptr) +{ + if (auto omp_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return omp_exec->get_num_threads_per_core(); + } else if (auto ref_exec = + std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return ref_exec->get_num_threads_per_core(); + } else { + return 0; + } +} + +//---------------------------- GPU ----------------------------- +size_t ginkgo_executor_gpu_get_device_id(gko_executor exec_st_ptr) +{ + if (auto cuda_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return cuda_exec->get_device_id(); + } else if (auto hip_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return hip_exec->get_device_id(); + } else if (auto dpcpp_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return dpcpp_exec->get_device_id(); + } else { + return 0; + } +} + +// CUDA/HIP +gko_executor ginkgo_executor_cuda_create(size_t device_id, + gko_executor exec_st_ptr) +{ + if (auto omp_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return new gko_executor_st{ + gko::CudaExecutor::create(device_id, exec_st_ptr->shared_ptr)}; + } else if (auto reference_exec = + std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return new gko_executor_st{ + gko::CudaExecutor::create(device_id, exec_st_ptr->shared_ptr)}; + } else { + return nullptr; + } +} + +size_t ginkgo_executor_cuda_get_num_devices() +{ + return gko::CudaExecutor::get_num_devices(); +} + +gko_executor ginkgo_executor_hip_create(size_t device_id, + gko_executor exec_st_ptr) +{ + if (auto omp_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return new gko_executor_st{ + gko::HipExecutor::create(device_id, exec_st_ptr->shared_ptr)}; + } else if (auto reference_exec = + std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return new gko_executor_st{ + gko::HipExecutor::create(device_id, exec_st_ptr->shared_ptr)}; + } else { + return nullptr; + } +} + +size_t ginkgo_executor_hip_get_num_devices() +{ + return gko::HipExecutor::get_num_devices(); +} + +size_t ginkgo_executor_gpu_thread_get_num_multiprocessor( + gko_executor exec_st_ptr) +{ + if (auto cuda_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return cuda_exec->get_num_multiprocessor(); + } else if (auto hip_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return hip_exec->get_num_multiprocessor(); + } else { + return 0; + } +} + +size_t ginkgo_executor_gpu_thread_get_num_warps_per_sm(gko_executor exec_st_ptr) +{ + if (auto cuda_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return cuda_exec->get_num_warps_per_sm(); + } else if (auto hip_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return hip_exec->get_num_warps_per_sm(); + } else { + return 0; + } +} + +size_t ginkgo_executor_gpu_thread_get_num_warps(gko_executor exec_st_ptr) +{ + if (auto cuda_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return cuda_exec->get_num_warps(); + } else if (auto hip_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return hip_exec->get_num_warps(); + } else { + return 0; + } +} + +size_t ginkgo_executor_gpu_thread_get_warp_size(gko_executor exec_st_ptr) +{ + if (auto cuda_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return cuda_exec->get_warp_size(); + } else if (auto hip_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return hip_exec->get_warp_size(); + } else { + return 0; + } +} + +size_t ginkgo_executor_gpu_thread_get_major_version(gko_executor exec_st_ptr) +{ + if (auto cuda_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return cuda_exec->get_major_version(); + } else if (auto hip_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return hip_exec->get_major_version(); + } else { + return 0; + } +} + +size_t ginkgo_executor_gpu_thread_get_minor_version(gko_executor exec_st_ptr) +{ + if (auto cuda_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return cuda_exec->get_minor_version(); + } else if (auto hip_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return hip_exec->get_minor_version(); + } else { + return 0; + } +} + +size_t ginkgo_executor_gpu_thread_get_closest_numa(gko_executor exec_st_ptr) +{ + if (auto cuda_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return cuda_exec->get_closest_numa(); + } else if (auto hip_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return hip_exec->get_closest_numa(); + } else { + return 0; + } +} + +// DPCPP/SYCL +gko_executor ginkgo_executor_dpcpp_create(size_t device_id, + gko_executor exec_st_ptr) +{ + if (auto omp_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return new gko_executor_st{ + gko::DpcppExecutor::create(device_id, exec_st_ptr->shared_ptr)}; + } else if (auto reference_exec = + std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return new gko_executor_st{ + gko::DpcppExecutor::create(device_id, exec_st_ptr->shared_ptr)}; + } else { + return nullptr; + } +} + +size_t ginkgo_executor_dpcpp_get_num_devices() +{ + return gko::DpcppExecutor::get_num_devices("gpu"); +} + +size_t ginkgo_executor_gpu_item_get_max_subgroup_size(gko_executor exec_st_ptr) +{ + if (auto dpcpp_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return dpcpp_exec->get_max_subgroup_size(); + } else { + return 0; + } +} + +size_t ginkgo_executor_gpu_item_get_max_workgroup_size(gko_executor exec_st_ptr) +{ + if (auto dpcpp_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return dpcpp_exec->get_max_workgroup_size(); + } else { + return 0; + } +} + +size_t ginkgo_executor_gpu_item_get_num_computing_units( + gko_executor exec_st_ptr) +{ + if (auto dpcpp_exec = std::dynamic_pointer_cast( + exec_st_ptr->shared_ptr)) { + return dpcpp_exec->get_num_computing_units(); + } else { + return 0; + } +} + +/* ---------------------------------------------------------------------- + * Library functions for creating arrays and array operations in GINKGO + * ---------------------------------------------------------------------- */ +DEFINE_ARRAY_OVERLOAD(int16_t, int16_t, i16) +DEFINE_ARRAY_OVERLOAD(int, int, i32) +DEFINE_ARRAY_OVERLOAD(int64_t, std::int64_t, i64) +DEFINE_ARRAY_OVERLOAD(float, float, f32) +DEFINE_ARRAY_OVERLOAD(double, double, f64) + +/* ---------------------------------------------------------------------- + * Library functions for creating matrices and matrix operations in GINKGO + * ---------------------------------------------------------------------- */ +DEFINE_DENSE_OVERLOAD(float, float, f32) +DEFINE_DENSE_OVERLOAD(double, double, f64) + +DEFINE_CSR_OVERLOAD(float, int, float, int, f32_i32, f32) +DEFINE_CSR_OVERLOAD(float, int64_t, float, std::int64_t, f32_i64, f32) +DEFINE_CSR_OVERLOAD(double, int, double, int, f64_i32, f64) +DEFINE_CSR_OVERLOAD(double, int64_t, double, std::int64_t, f64_i64, f64) + +/* ---------------------------------------------------------------------- + * Library functions for deferred factory parameters in GINKGO + * ---------------------------------------------------------------------- */ +struct gko_deferred_factory_parameter_st { + gko::deferred_factory_parameter parameter; +}; + +void ginkgo_deferred_factory_parameter_delete( + gko_deferred_factory_parameter dfp_st_ptr) +{ + delete dfp_st_ptr; +} + +//-------------------- Preconditioner ----------------------------- +gko_deferred_factory_parameter ginkgo_preconditioner_none_create() +{ + return new gko_deferred_factory_parameter_st{}; +} + +gko_deferred_factory_parameter ginkgo_preconditioner_jacobi_f64_i32_create( + int blocksize) +{ + return new gko_deferred_factory_parameter_st{ + gko::preconditioner::Jacobi::build().with_max_block_size( + static_cast(blocksize))}; +} + +gko_deferred_factory_parameter ginkgo_preconditioner_ilu_f64_i32_create( + gko_deferred_factory_parameter dfp_st_ptr) +{ + // Generate an ILU preconditioner factory by setting lower and upper + // triangular solver - in this case the exact triangular solves + return new gko_deferred_factory_parameter_st{ + gko::preconditioner::Ilu, + gko::solver::UpperTrs, + false>::build() + .with_factorization(dfp_st_ptr->parameter)}; +} + +//-------------------- Factorization ------------------------------ +gko_deferred_factory_parameter ginkgo_factorization_parilu_f64_i32_create( + int iteration, bool skip_sorting) +{ + // Generate factors using ParILU + return new gko_deferred_factory_parameter_st{ + gko::factorization::ParIlu::build() + .with_iterations(static_cast(iteration)) + .with_skip_sorting(skip_sorting)}; +} + +/* ---------------------------------------------------------------------- + * Library functions for LinOp objects in GINKGO + * ---------------------------------------------------------------------- */ +struct gko_linop_st { + std::shared_ptr shared_ptr; +}; + +void ginkgo_linop_delete(gko_linop linop_st_ptr) { delete linop_st_ptr; } + +void ginkgo_linop_apply(gko_linop A_st_ptr, gko_linop b_st_ptr, + gko_linop x_st_ptr) +{ + (A_st_ptr->shared_ptr)->apply(b_st_ptr->shared_ptr, x_st_ptr->shared_ptr); +} + +//-------------------- Iterative solvers ----------------------------- +gko_linop ginkgo_linop_cg_preconditioned_f64_create( + gko_executor exec_st_ptr, gko_linop A_st_ptr, + gko_deferred_factory_parameter dfp_st_ptr, double reduction, int maxiter) +{ + return new gko_linop_st{ + gko::solver::Cg::build() + .with_criteria( + gko::stop::Iteration::build().with_max_iters( + static_cast(maxiter)), + gko::stop::ResidualNorm::build().with_reduction_factor( + reduction)) + .with_preconditioner(dfp_st_ptr->parameter) + .on(exec_st_ptr->shared_ptr) + ->generate(A_st_ptr->shared_ptr)}; +} + +gko_linop ginkgo_linop_gmres_preconditioned_f64_create( + gko_executor exec_st_ptr, gko_linop A_st_ptr, + gko_deferred_factory_parameter dfp_st_ptr, double reduction, int maxiter) +{ + return new gko_linop_st{ + gko::solver::Gmres::build() + .with_criteria( + gko::stop::Iteration::build().with_max_iters( + static_cast(maxiter)), + gko::stop::ResidualNorm::build().with_reduction_factor( + reduction)) + .with_preconditioner(dfp_st_ptr->parameter) + .on(exec_st_ptr->shared_ptr) + ->generate(A_st_ptr->shared_ptr)}; +} + +//-------------------- Direct solvers ----------------------------- +gko_linop ginkgo_linop_spd_direct_f64_i64_create(gko_executor exec_st_ptr, + gko_linop A_st_ptr) +{ + return new gko_linop_st{ + gko::experimental::solver::Direct::build() + .with_factorization( + gko::experimental::factorization::Cholesky::build()) + .on(exec_st_ptr->shared_ptr) + ->generate(A_st_ptr->shared_ptr)}; +} + +gko_linop ginkgo_linop_lu_direct_f64_i64_create(gko_executor exec_st_ptr, + gko_linop A_st_ptr) +{ + return new gko_linop_st{ + gko::experimental::solver::Direct::build() + .with_factorization( + gko::experimental::factorization::Lu::build()) + .on(exec_st_ptr->shared_ptr) + ->generate(A_st_ptr->shared_ptr)}; +} + +gko_linop ginkgo_linop_lu_direct_f64_i32_create(gko_executor exec_st_ptr, + gko_linop A_st_ptr) +{ + return new gko_linop_st{ + gko::experimental::solver::Direct::build() + .with_factorization( + gko::experimental::factorization::Lu::build()) + .on(exec_st_ptr->shared_ptr) + ->generate(A_st_ptr->shared_ptr)}; +} + +gko_linop ginkgo_linop_lu_direct_f32_i32_create(gko_executor exec_st_ptr, + gko_linop A_st_ptr) +{ + return new gko_linop_st{ + gko::experimental::solver::Direct::build() + .with_factorization( + gko::experimental::factorization::Lu::build()) + .on(exec_st_ptr->shared_ptr) + ->generate(A_st_ptr->shared_ptr)}; +} diff --git a/include/ginkgo/c_api.h b/include/ginkgo/c_api.h new file mode 100644 index 00000000000..60a786a1b26 --- /dev/null +++ b/include/ginkgo/c_api.h @@ -0,0 +1,850 @@ +// SPDX-FileCopyrightText: 2017 - 2024 The Ginkgo authors +// +// SPDX-License-Identifier: BSD-3-Clause + +#ifndef C_API_H +#define C_API_H + +#include +#include +#include +#include +/* ---------------------------------------------------------------------- + * Data type constants in GINKGO + * ---------------------------------------------------------------------- */ +enum _GKO_DATATYPE_CONST { + GKO_NONE = -1, + GKO_SHORT = 0, + GKO_INT = 1, + GKO_LONG_LONG = 2, + GKO_FLOAT = 3, + GKO_DOUBLE = 4, + GKO_COMPLEX_FLOAT = 5, + GKO_COMPLEX_DOUBLE = 6, +}; + +/* ---------------------------------------------------------------------- + * MACROS for generating structs for wrapping + * ---------------------------------------------------------------------- */ + +/** + * @brief A build instruction for defining gko::array, simplifying its + * construction by removing the repetitive typing of array's name. + * + * @param _ctype Type name of the element type in C + * + * @param _cpptype Type name of the element type in C++ + * + * @param _name Name of the datatype of the array + * + */ +#define DEFINE_ARRAY_OVERLOAD(_ctype, _cpptype, _name) \ + struct gko_array_##_name##_st { \ + gko::array<_cpptype> arr; \ + }; \ + \ + typedef gko_array_##_name##_st* gko_array_##_name; \ + \ + gko_array_##_name ginkgo_array_##_name##_create(gko_executor exec_st_ptr, \ + size_t size) \ + { \ + return new gko_array_##_name##_st{ \ + gko::array<_cpptype>{exec_st_ptr->shared_ptr, size}}; \ + } \ + \ + gko_array_##_name ginkgo_array_##_name##_create_view( \ + gko_executor exec_st_ptr, size_t size, _ctype* data_ptr) \ + { \ + return new gko_array_##_name##_st{gko::make_array_view( \ + exec_st_ptr->shared_ptr, size, static_cast<_cpptype*>(data_ptr))}; \ + } \ + \ + void ginkgo_array_##_name##_delete(gko_array_##_name array_st_ptr) \ + { \ + delete array_st_ptr; \ + } \ + \ + size_t ginkgo_array_##_name##_get_size(gko_array_##_name array_st_ptr) \ + { \ + return (*array_st_ptr).arr.get_size(); \ + } + +/** + * @brief A build instruction for declaring gko::array in the C API header + * file + */ +#define DECLARE_ARRAY_OVERLOAD(_ctype, _cpptype, _name) \ + struct gko_array_##_name##_st; \ + typedef struct gko_array_##_name##_st* gko_array_##_name; \ + gko_array_##_name ginkgo_array_##_name##_create(gko_executor exec_st_ptr, \ + size_t size); \ + gko_array_##_name ginkgo_array_##_name##_create_view( \ + gko_executor exec_st_ptr, size_t size, _ctype* data_ptr); \ + void ginkgo_array_##_name##_delete(gko_array_##_name array_st_ptr); \ + size_t ginkgo_array_##_name##_get_size(gko_array_##_name array_st_ptr); + + +/** + * @brief A build instruction for defining gko::matrix::Dense, simplifying + * its construction by removing the repetitive typing of array's name. + * + * @param _ctype Type name of the element type in C + * + * @param _cpptype Type name of the element type in C++ + * + * @param _name Name of the datatype of the dense matrix + * + */ +#define DEFINE_DENSE_OVERLOAD(_ctype, _cpptype, _name) \ + struct gko_matrix_dense_##_name##_st { \ + std::shared_ptr> mat; \ + }; \ + \ + gko_matrix_dense_##_name ginkgo_matrix_dense_##_name##_create( \ + gko_executor exec, gko_dim2_st size) \ + { \ + return new gko_matrix_dense_##_name##_st{ \ + gko::matrix::Dense<_cpptype>::create( \ + (*exec).shared_ptr, gko::dim<2>{size.rows, size.cols})}; \ + } \ + \ + gko_matrix_dense_##_name ginkgo_matrix_dense_##_name##_create_view( \ + gko_executor exec, gko_dim2_st size, _ctype* values, size_t stride) \ + { \ + return new gko_matrix_dense_##_name##_st{ \ + gko::matrix::Dense<_ctype>::create( \ + (*exec).shared_ptr, gko::dim<2>{size.rows, size.cols}, \ + gko::array<_ctype>::view((*exec).shared_ptr, size.rows, \ + values), \ + stride)}; \ + } \ + \ + void ginkgo_matrix_dense_##_name##_delete( \ + gko_matrix_dense_##_name mat_st_ptr) \ + { \ + delete mat_st_ptr; \ + } \ + \ + void ginkgo_matrix_dense_##_name##_fill( \ + gko_matrix_dense_##_name mat_st_ptr, _ctype value) \ + { \ + (*mat_st_ptr).mat->fill(value); \ + } \ + \ + _ctype ginkgo_matrix_dense_##_name##_at( \ + gko_matrix_dense_##_name mat_st_ptr, size_t row, size_t col) \ + { \ + return (*mat_st_ptr).mat->at(row, col); \ + } \ + \ + gko_dim2_st ginkgo_matrix_dense_##_name##_get_size( \ + gko_matrix_dense_##_name mat_st_ptr) \ + { \ + auto dim = (*mat_st_ptr).mat->get_size(); \ + return gko_dim2_st{dim[0], dim[1]}; \ + } \ + \ + _ctype* ginkgo_matrix_dense_##_name##_get_values( \ + gko_matrix_dense_##_name mat_st_ptr) \ + { \ + return (*mat_st_ptr).mat->get_values(); \ + } \ + \ + const _ctype* ginkgo_matrix_dense_##_name##_get_const_values( \ + gko_matrix_dense_##_name mat_st_ptr) \ + { \ + return (*mat_st_ptr).mat->get_const_values(); \ + } \ + \ + size_t ginkgo_matrix_dense_##_name##_get_num_stored_elements( \ + gko_matrix_dense_##_name mat_st_ptr) \ + { \ + return (*mat_st_ptr).mat->get_num_stored_elements(); \ + } \ + \ + size_t ginkgo_matrix_dense_##_name##_get_stride( \ + gko_matrix_dense_##_name mat_st_ptr) \ + { \ + return (*mat_st_ptr).mat->get_stride(); \ + } \ + \ + void ginkgo_matrix_dense_##_name##_compute_dot( \ + gko_matrix_dense_##_name mat_st_ptr1, \ + gko_matrix_dense_##_name mat_st_ptr2, \ + gko_matrix_dense_##_name mat_st_ptr_res) \ + { \ + (*mat_st_ptr1) \ + .mat->compute_dot((*mat_st_ptr2).mat, (*mat_st_ptr_res).mat); \ + } \ + void ginkgo_matrix_dense_##_name##_compute_norm1( \ + gko_matrix_dense_##_name mat_st_ptr1, \ + gko_matrix_dense_##_name mat_st_ptr2) \ + { \ + (*mat_st_ptr1).mat->compute_norm1((*mat_st_ptr2).mat); \ + } \ + \ + void ginkgo_matrix_dense_##_name##_compute_norm2( \ + gko_matrix_dense_##_name mat_st_ptr1, \ + gko_matrix_dense_##_name mat_st_ptr2) \ + { \ + (*mat_st_ptr1).mat->compute_norm2((*mat_st_ptr2).mat); \ + } \ + \ + gko_matrix_dense_##_name ginkgo_matrix_dense_##_name##_read( \ + const char* str_ptr, gko_executor exec) \ + { \ + std::string filename(str_ptr); \ + std::ifstream ifs(filename, std::ifstream::in); \ + \ + return new gko_matrix_dense_##_name##_st{ \ + gko::read>(std::move(ifs), \ + (*exec).shared_ptr)}; \ + } \ + \ + char* ginkgo_matrix_dense_##_name##_write_mtx( \ + gko_matrix_dense_##_name mat_st_ptr) \ + { \ + auto cout_buff = std::cout.rdbuf(); \ + \ + std::ostringstream local; \ + std::cout.rdbuf(local.rdbuf()); \ + gko::write(std::cout, (*mat_st_ptr).mat); \ + \ + std::cout.rdbuf(cout_buff); \ + \ + std::string str = local.str(); \ + char* cstr = new char[str.length() + 1]; \ + std::strcpy(cstr, str.c_str()); \ + return cstr; \ + } + +/** + * @brief A build instruction for declaring gko::matrix::Dense in the C API + * header file + */ +#define DECLARE_DENSE_OVERLOAD(_ctype, _cpptype, _name) \ + struct gko_matrix_dense_##_name##_st; \ + typedef struct gko_matrix_dense_##_name##_st* gko_matrix_dense_##_name; \ + gko_matrix_dense_##_name ginkgo_matrix_dense_##_name##_create( \ + gko_executor exec, gko_dim2_st size); \ + gko_matrix_dense_##_name ginkgo_matrix_dense_##_name##_create_view( \ + gko_executor exec, gko_dim2_st size, _ctype* values, size_t stride); \ + void ginkgo_matrix_dense_##_name##_delete( \ + gko_matrix_dense_##_name mat_st_ptr); \ + void ginkgo_matrix_dense_##_name##_fill( \ + gko_matrix_dense_##_name mat_st_ptr, _ctype value); \ + _ctype ginkgo_matrix_dense_##_name##_at( \ + gko_matrix_dense_##_name mat_st_ptr, size_t row, size_t col); \ + gko_dim2_st ginkgo_matrix_dense_##_name##_get_size( \ + gko_matrix_dense_##_name mat_st_ptr); \ + _ctype* ginkgo_matrix_dense_##_name##_get_values( \ + gko_matrix_dense_##_name mat_st_ptr); \ + const _ctype* ginkgo_matrix_dense_##_name##_get_const_values( \ + gko_matrix_dense_##_name mat_st_ptr); \ + size_t ginkgo_matrix_dense_##_name##_get_num_stored_elements( \ + gko_matrix_dense_##_name mat_st_ptr); \ + size_t ginkgo_matrix_dense_##_name##_get_stride( \ + gko_matrix_dense_##_name mat_st_ptr); \ + void ginkgo_matrix_dense_##_name##_compute_dot( \ + gko_matrix_dense_##_name mat_st_ptr1, \ + gko_matrix_dense_##_name mat_st_ptr2, \ + gko_matrix_dense_##_name mat_st_ptr_res); \ + void ginkgo_matrix_dense_##_name##_compute_norm1( \ + gko_matrix_dense_##_name mat_st_ptr1, \ + gko_matrix_dense_##_name mat_st_ptr2); \ + void ginkgo_matrix_dense_##_name##_compute_norm2( \ + gko_matrix_dense_##_name mat_st_ptr1, \ + gko_matrix_dense_##_name mat_st_ptr2); \ + gko_matrix_dense_##_name ginkgo_matrix_dense_##_name##_read( \ + const char* str_ptr, gko_executor exec); \ + char* ginkgo_matrix_dense_##_name##_write_mtx( \ + gko_matrix_dense_##_name mat_st_ptr); + + +/** + * @brief A build instruction for defining gko::matrix::Csr, simplifying + * its construction by removing the repetitive typing of array's name. + * + * @param _ctype_value Type name of the element type in C + * + * @param _ctype_index Type name of the index type in C + * + * @param _cpptype_value Type name of the element type in C++ + * + * @param _cpptype_index Type name of the index type in C++ + * + * @param _name Name of the datatype of the sparse CSR matrix + * + * @param _name_dense Name of the datatype of the dense matrix for apply + * function + */ +#define DEFINE_CSR_OVERLOAD(_ctype_value, _ctype_index, _cpptype_value, \ + _cpptype_index, _name, _name_dense) \ + struct gko_matrix_csr_##_name##_st { \ + std::shared_ptr> mat; \ + }; \ + \ + gko_matrix_csr_##_name ginkgo_matrix_csr_##_name##_create( \ + gko_executor exec, gko_dim2_st size, size_t nnz) \ + { \ + return new gko_matrix_csr_##_name##_st{ \ + gko::matrix::Csr<_cpptype_value, _cpptype_index>::create( \ + (*exec).shared_ptr, gko::dim<2>{size.rows, size.cols}, nnz)}; \ + } \ + \ + gko_matrix_csr_##_name ginkgo_matrix_csr_##_name##_create_view( \ + gko_executor exec, gko_dim2_st size, size_t nnz, \ + _ctype_index* row_ptrs, _ctype_index* col_idxs, _ctype_value* values) \ + { \ + return new gko_matrix_csr_##_name##_st{ \ + gko::matrix::Csr<_cpptype_value, _cpptype_index>::create( \ + (*exec).shared_ptr, gko::dim<2>{size.rows, size.cols}, \ + gko::array<_cpptype_value>::view((*exec).shared_ptr, nnz, \ + values), \ + gko::array<_cpptype_index>::view((*exec).shared_ptr, nnz, \ + col_idxs), \ + gko::array<_cpptype_index>::view((*exec).shared_ptr, \ + size.rows + 1, row_ptrs))}; \ + } \ + \ + void ginkgo_matrix_csr_##_name##_delete(gko_matrix_csr_##_name mat_st_ptr) \ + { \ + delete mat_st_ptr; \ + } \ + \ + gko_matrix_csr_##_name ginkgo_matrix_csr_##_name##_read( \ + const char* str_ptr, gko_executor exec) \ + { \ + std::string filename(str_ptr); \ + std::ifstream ifs(filename, std::ifstream::in); \ + \ + return new gko_matrix_csr_##_name##_st{ \ + gko::read>( \ + std::move(ifs), (*exec).shared_ptr)}; \ + } \ + \ + void ginkgo_write_csr_##_name##_in_coo(const char* str_ptr, \ + gko_matrix_csr_##_name mat_st_ptr) \ + { \ + std::string filename(str_ptr); \ + std::ofstream stream{filename}; \ + std::cerr << "Writing " << filename << std::endl; \ + gko::write(stream, (*mat_st_ptr).mat, gko::layout_type::coordinate); \ + } \ + \ + size_t ginkgo_matrix_csr_##_name##_get_num_stored_elements( \ + gko_matrix_csr_##_name mat_st_ptr) \ + { \ + return (*mat_st_ptr).mat->get_num_stored_elements(); \ + } \ + \ + size_t ginkgo_matrix_csr_##_name##_get_num_srow_elements( \ + gko_matrix_csr_##_name mat_st_ptr) \ + { \ + return (*mat_st_ptr).mat->get_num_srow_elements(); \ + } \ + \ + gko_dim2_st ginkgo_matrix_csr_##_name##_get_size( \ + gko_matrix_csr_##_name mat_st_ptr) \ + { \ + auto dim = (*mat_st_ptr).mat->get_size(); \ + return gko_dim2_st{dim[0], dim[1]}; \ + } \ + \ + const _ctype_value* ginkgo_matrix_csr_##_name##_get_const_values( \ + gko_matrix_csr_##_name mat_st_ptr) \ + { \ + return (*mat_st_ptr).mat->get_const_values(); \ + } \ + \ + const _ctype_index* ginkgo_matrix_csr_##_name##_get_const_col_idxs( \ + gko_matrix_csr_##_name mat_st_ptr) \ + { \ + return (*mat_st_ptr).mat->get_const_col_idxs(); \ + } \ + \ + const _ctype_index* ginkgo_matrix_csr_##_name##_get_const_row_ptrs( \ + gko_matrix_csr_##_name mat_st_ptr) \ + { \ + return (*mat_st_ptr).mat->get_const_row_ptrs(); \ + } \ + \ + const _ctype_index* ginkgo_matrix_csr_##_name##_get_const_srow( \ + gko_matrix_csr_##_name mat_st_ptr) \ + { \ + return (*mat_st_ptr).mat->get_const_srow(); \ + } \ + \ + void ginkgo_matrix_csr_##_name##_apply( \ + gko_matrix_csr_##_name mat_st_ptr, \ + gko_matrix_dense_##_name_dense alpha, \ + gko_matrix_dense_##_name_dense x, gko_matrix_dense_##_name_dense beta, \ + gko_matrix_dense_##_name_dense y) \ + { \ + mat_st_ptr->mat->apply(alpha->mat, x->mat, beta->mat, y->mat); \ + } + + +/** + * @brief A build instruction for declaring gko::matrix::Csr in the C API + * header file + */ +#define DECLARE_CSR_OVERLOAD(_ctype_value, _ctype_index, _cpptype_value, \ + _cpptype_index, _name, _name_dense) \ + struct gko_matrix_csr_##_name##_st; \ + typedef struct gko_matrix_csr_##_name##_st* gko_matrix_csr_##_name; \ + gko_matrix_csr_##_name ginkgo_matrix_csr_##_name##_create( \ + gko_executor exec, gko_dim2_st size, size_t nnz); \ + gko_matrix_csr_##_name ginkgo_matrix_csr_##_name##_create_view( \ + gko_executor exec, gko_dim2_st size, size_t nnz, \ + _ctype_index* row_ptrs, _ctype_index* col_idxs, _ctype_value* values); \ + void ginkgo_matrix_csr_##_name##_delete( \ + gko_matrix_csr_##_name mat_st_ptr); \ + gko_matrix_csr_##_name ginkgo_matrix_csr_##_name##_read( \ + const char* str_ptr, gko_executor exec); \ + void ginkgo_write_csr_##_name##_in_coo(const char* str_ptr, \ + gko_matrix_csr_##_name mat_st_ptr); \ + size_t ginkgo_matrix_csr_##_name##_get_num_stored_elements( \ + gko_matrix_csr_##_name mat_st_ptr); \ + size_t ginkgo_matrix_csr_##_name##_get_num_srow_elements( \ + gko_matrix_csr_##_name mat_st_ptr); \ + gko_dim2_st ginkgo_matrix_csr_##_name##_get_size( \ + gko_matrix_csr_##_name mat_st_ptr); \ + const _ctype_value* ginkgo_matrix_csr_##_name##_get_const_values( \ + gko_matrix_csr_##_name mat_st_ptr); \ + const _ctype_index* ginkgo_matrix_csr_##_name##_get_const_col_idxs( \ + gko_matrix_csr_##_name mat_st_ptr); \ + const _ctype_index* ginkgo_matrix_csr_##_name##_get_const_row_ptrs( \ + gko_matrix_csr_##_name mat_st_ptr); \ + const _ctype_index* ginkgo_matrix_csr_##_name##_get_const_srow( \ + gko_matrix_csr_##_name mat_st_ptr); \ + void ginkgo_matrix_csr_##_name##_apply( \ + gko_matrix_csr_##_name mat_st_ptr, \ + gko_matrix_dense_##_name_dense alpha, \ + gko_matrix_dense_##_name_dense x, gko_matrix_dense_##_name_dense beta, \ + gko_matrix_dense_##_name_dense y); + +#ifdef __cplusplus +extern "C" { +#endif +/* ---------------------------------------------------------------------- + * C memory management + * ---------------------------------------------------------------------- */ +void c_char_ptr_free(char* ptr); + +/* ---------------------------------------------------------------------- + * Library functions for retrieving configuration information in GINKGO + * ---------------------------------------------------------------------- */ +/** + * @brief This function is a wrapper for obtaining the version of the ginkgo + * library + * + */ +void ginkgo_version_get(); + +/* ---------------------------------------------------------------------- + * Library functions for some basic types in GINKGO + * ---------------------------------------------------------------------- */ +/** + * @brief Struct implements the gko::dim<2> type + * + */ +typedef struct { + size_t rows; + size_t cols; +} gko_dim2_st; + +/** + * @brief Allocates memory for a C-based reimplementation of the gko::dim<2> + * type + * + * @param rows First dimension + * @param cols Second dimension + * @return gko_dim2_st C struct that contains members of the gko::dim<2> type + */ +gko_dim2_st ginkgo_dim2_create(size_t rows, size_t cols); + +/** + * @brief Obtains the value of the first element of a gko::dim<2> type + * + * @param dim An object of gko_dim2_st type + * @return size_t First dimension + */ +size_t ginkgo_dim2_rows_get(gko_dim2_st dim); + +/** + * @brief Obtains the value of the second element of a gko::dim<2> type + * + * @param dim An object of gko_dim2_st type + * @return size_t Second dimension + */ +size_t ginkgo_dim2_cols_get(gko_dim2_st dim); + +/* ---------------------------------------------------------------------- + * Library functions for executors (Creation, Getters) in GINKGO + * ---------------------------------------------------------------------- */ +/** + * @brief Struct containing the shared pointer to a ginkgo executor + * + */ +struct gko_executor_st; + +/** + * @brief Type of the pointer to the wrapped `gko_executor_st` struct + * + */ +typedef struct gko_executor_st* gko_executor; + +/** + * @brief Deallocates memory for an executor on targeted device. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the executor to be + * deleted + */ +void ginkgo_executor_delete(gko_executor exec_st_ptr); + +/** + * @brief Returns the master OmpExecutor of this Executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the current executor + * @return gko_executor Raw pointer to the shared pointer of the master executor + */ +gko_executor ginkgo_executor_get_master(gko_executor exec_st_ptr); + +/** + * @brief Verifies whether the executors share the same memory. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the current executor + * @param other_exec_st_ptr Raw pointer to the shared pointer of the other + * executor + */ +bool ginkgo_executor_memory_accessible(gko_executor exec_st_ptr, + gko_executor other_exec_st_ptr); + +/** + * @brief Synchronize the operations launched on the executor with its master. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the current executor + */ +void ginkgo_executor_synchronize(gko_executor exec_st_ptr); + +//---------------------------- CPU ----------------------------- +/** + * @brief Create an OMP executor + * + * @return gko_executor Raw pointer to the shared pointer of the OMP executor + * created + */ +gko_executor ginkgo_executor_omp_create(); + +/** + * @brief Create a reference executor + * + * @return gko_executor Raw pointer to the shared pointer of the reference + * executor created + */ +gko_executor ginkgo_executor_reference_create(); + +/** + * @brief Get the number of cores of the CPU associated to this executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the executor + * @return size_t No. of cores + */ +size_t ginkgo_executor_cpu_get_num_cores(gko_executor exec_st_ptr); + +/** + * @brief Get the number of threads per core of the CPU associated to this + * executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the executor + * @return size_t No. of threads per core + */ +size_t ginkgo_executor_cpu_get_num_threads_per_core(gko_executor exec_st_ptr); + +//---------------------------- GPU ----------------------------- +/** + * @brief Get the device id of the device associated to this executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the executor + * @return size_t Device id + */ +size_t ginkgo_executor_gpu_get_device_id(gko_executor exec_st_ptr); + +// CUDA/HIP +/** + * @brief Create a CUDA executor + * + * @param device_id Device id + * @param exec_st_ptr Raw pointer to the shared pointer of the master executor + * @return gko_executor Raw pointer to the shared pointer of the CUDA executor + * created + */ +gko_executor ginkgo_executor_cuda_create(size_t device_id, + gko_executor exec_st_ptr); + +/** + * @brief Get the number of devices of this CUDA executor. + * + * @return size_t No. of devices + */ +size_t ginkgo_executor_cuda_get_num_devices(); + +/** + * @brief Create a HIP executor + * + * @param device_id Device id + * @param exec_st_ptr Raw pointer to the shared pointer of the master executor + * @return gko_executor Raw pointer to the shared pointer of the HIP executor + * created + */ +gko_executor ginkgo_executor_hip_create(size_t device_id, + gko_executor exec_st_ptr); + +/** + * @brief Get the number of devices of this HIP executor. + * + * @return size_t No. of devices + */ +size_t ginkgo_executor_hip_get_num_devices(); + +/** + * @brief Get the number of multiprocessors of this thread-based executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the thread-based + * executor + * @return size_t No. multiprocessors + */ +size_t ginkgo_executor_gpu_thread_get_num_multiprocessor( + gko_executor exec_st_ptr); + +/** + * @brief Get the number of warps per SM of this thread-based executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the thread-based + * executor + * @return size_t No. of warps per SM + */ +size_t ginkgo_executor_gpu_thread_get_num_warps_per_sm( + gko_executor exec_st_ptr); + +/** + * @brief Get the number of warps of this thread-based executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the thread-based + * executor + * @return size_t No. of warps + */ +size_t ginkgo_executor_gpu_thread_get_num_warps(gko_executor exec_st_ptr); + +/** + * @brief Get the warp size of this thread-based executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the thread-based + * executor + * @return size_t The warp size of this executor + */ +size_t ginkgo_executor_gpu_thread_get_warp_size(gko_executor exec_st_ptr); + +/** + * @brief Get the major version of compute capability. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the thread-based + * executor + * @return size_t The major version of compute capability + */ +size_t ginkgo_executor_gpu_thread_get_major_version(gko_executor exec_st_ptr); + +/** + * @brief Get the minor version of compute capability. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the thread-based + * executor + * @return size_t The minor version of compute capability + */ +size_t ginkgo_executor_gpu_thread_get_minor_version(gko_executor exec_st_ptr); + +/** + * @brief Get the closest NUMA node. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the thread-based + * executor + * @return size_t No. of the closest NUMA node + */ +size_t ginkgo_executor_gpu_thread_get_closest_numa(gko_executor exec_st_ptr); + +// DPCPP + +/** + * @brief Create a DPCPP executor + * + * @param device_id Device id + * @param exec_st_ptr Raw pointer to the shared pointer of the master executor + * @return gko_executor Raw pointer to the shared pointer of the DPCPP executor + * created + */ +gko_executor ginkgo_executor_dpcpp_create(size_t device_id, + gko_executor exec_st_ptr); + +/** + * @brief Get the number of devices of this DPCPP executor. + * + * @return size_t No. of devices + */ +size_t ginkgo_executor_dpcpp_get_num_devices(); + +/** + * @brief Get the number of subgroups of this item-based executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the item-based + * executor + * @return size_t No. of subgroups + */ +size_t ginkgo_executor_gpu_item_get_max_subgroup_size(gko_executor exec_st_ptr); + +/** + * @brief Get the number of workgroups of this item-based executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the item-based + * executor + * @return size_t No. of workgroups + */ +size_t ginkgo_executor_gpu_item_get_max_workgroup_size( + gko_executor exec_st_ptr); + +/** + * @brief Get the number of computing units of this item-based executor. + * + * @param exec_st_ptr Raw pointer to the shared pointer of the item-based + * executor + * @return size_t No. of computing units + */ +size_t ginkgo_executor_gpu_item_get_num_computing_units( + gko_executor exec_st_ptr); + +/* ---------------------------------------------------------------------- + * Library functions for creating arrays and array operations in GINKGO + * ---------------------------------------------------------------------- */ +DECLARE_ARRAY_OVERLOAD(int16_t, int16_t, i16) +DECLARE_ARRAY_OVERLOAD(int, int, i32) +DECLARE_ARRAY_OVERLOAD(int64_t, std::int64_t, i64) +DECLARE_ARRAY_OVERLOAD(float, float, f32) +DECLARE_ARRAY_OVERLOAD(double, double, f64) + +/* ---------------------------------------------------------------------- + * Library functions for creating matrices and matrix operations in GINKGO + * ---------------------------------------------------------------------- */ +DECLARE_DENSE_OVERLOAD(float, float, f32) +DECLARE_DENSE_OVERLOAD(double, double, f64) + +DECLARE_CSR_OVERLOAD(float, int, float, int, f32_i32, f32) +DECLARE_CSR_OVERLOAD(float, int64_t, float, std::int64_t, f32_i64, f32) +DECLARE_CSR_OVERLOAD(double, int, double, int, f64_i32, f64) +DECLARE_CSR_OVERLOAD(double, int64_t, double, std::int64_t, f64_i64, f64) + +/* ---------------------------------------------------------------------- + * Library functions for deferred factory parameters in GINKGO + * ---------------------------------------------------------------------- */ +/** + * @brief Struct containing the shared pointer to a ginkgo deferred factory + * parameter + * + */ +struct gko_deferred_factory_parameter_st; + +/** + * @brief Type of the pointer to the wrapped `gko_deferred_factory_parameter_st` + * struct + */ +typedef struct gko_deferred_factory_parameter_st* + gko_deferred_factory_parameter; + +/** + * @brief Deallocates memory for a ginkgo deferred factory parameter object. + * + * @param dfp_st_ptr Raw pointer to the shared pointer of the deferred factory + * parameter object to be deleted + */ +void ginkgo_deferred_factory_parameter_delete( + gko_deferred_factory_parameter dfp_st_ptr); + +//-------------------- Preconditioner ----------------------------- +/** + * @brief Create a deferred factory parameter for an empty preconditioner + * + * @return gko_deferred_factory_parameter Raw pointer to the shared pointer of + * the none preconditioner created + */ +gko_deferred_factory_parameter ginkgo_preconditioner_none_create(); + +gko_deferred_factory_parameter ginkgo_preconditioner_jacobi_f64_i32_create( + int blocksize); +gko_deferred_factory_parameter ginkgo_preconditioner_ilu_f64_i32_create( + gko_deferred_factory_parameter dfp_st_ptr); + +//-------------------- Factorization ------------------------------ +gko_deferred_factory_parameter ginkgo_factorization_parilu_f64_i32_create( + int iteration, bool skip_sorting); + +/* ---------------------------------------------------------------------- + * Library functions for LinOp objects in GINKGO + * ---------------------------------------------------------------------- */ +/** + * @brief Struct containing the shared pointer to a ginkgo LinOp object + * + */ +struct gko_linop_st; + +/** + * @brief Type of the pointer to the wrapped `gko_linop_st` struct + * + */ +typedef struct gko_linop_st* gko_linop; + +/** + * @brief Deallocates memory for a ginkgo LinOp object. + * + * @param linop_st_ptr Raw pointer to the shared pointer of the LinOp object to + * be deleted + */ +void ginkgo_linop_delete(gko_linop linop_st_ptr); + +/** + * @brief Applies a linear operator to a vector (or a sequence of vectors). + * + * @param A_st_ptr Raw pointer to the shared pointer of the LinOp object + * @param b_st_ptr Raw pointer to the shared pointer of the input vector(s) on + * which the operator is applied + * @param x_st_ptr Raw pointer to the shared pointer of the output vector where + * the result is stored + */ +void ginkgo_linop_apply(gko_linop A_st_ptr, gko_linop b_st_ptr, + gko_linop x_st_ptr); + +//-------------------- Iterative solvers ----------------------------- +gko_linop ginkgo_linop_cg_preconditioned_f64_create( + gko_executor exec_st_ptr, gko_linop A_st_ptr, + gko_deferred_factory_parameter dfp_st_ptr, double reduction, int maxiter); + +gko_linop ginkgo_linop_gmres_preconditioned_f64_create( + gko_executor exec_st_ptr, gko_linop A_st_ptr, + gko_deferred_factory_parameter dfp_st_ptr, double reduction, int maxiter); + +//-------------------- Direct solvers ----------------------------- +gko_linop ginkgo_linop_spd_direct_f64_i64_create(gko_executor exec_st_ptr, + gko_linop A_st_ptr); + +gko_linop ginkgo_linop_lu_direct_f64_i64_create(gko_executor exec_st_ptr, + gko_linop A_st_ptr); + +gko_linop ginkgo_linop_lu_direct_f64_i32_create(gko_executor exec_st_ptr, + gko_linop A_st_ptr); + +gko_linop ginkgo_linop_lu_direct_f32_i32_create(gko_executor exec_st_ptr, + gko_linop A_st_ptr); + +#ifdef __cplusplus +} +#endif /* language linkage */ + +#endif /* C_API_H */