forked from stevefielding/tensorflow-anpr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_tf_records.py
421 lines (375 loc) · 18.1 KB
/
build_tf_records.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
r"""Convert raw PASCAL like dataset to TFRecord for object_detection.
Enable view_mode if you wish to check your annotations
If view mode is enabled, then the record file will not be written
If plate_split_label != 'none', then the TFRecord will contain separate annotations for the top level boxes,
and the 'bottom level boxes.
Example usage, with plate char split:
python build_tf_records.py \
--record_dir=datasets/records \
--annotations_dir=images \
--label_map_file=datasets/records/classes.pbtxt \
--view_mode=False \
--image_scale_factor=0.4 \
--test_record_file=testing_plate_char_split.record \
--train_record_file=training_plate_char_split.record
--split_label='plate'
Example usage, with no split:
python build_tf_records.py \
--record_dir=datasets/records \
--annotations_dir=images \
--label_map_file=datasets/records/classes.pbtxt \
--view_mode=False \
--test_record_file=testing_plate_char_combined.record \
--train_record_file=training_plate_char_combined.record \
--split_label=none
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import hashlib
import io
import logging
import os
import tempfile
import imutils
import numpy as np
from lxml import etree
import PIL.Image
import tensorflow as tf
import cv2
import re
from sklearn.model_selection import train_test_split
from object_detection.utils import dataset_util
from object_detection.utils import label_map_util
flags = tf.app.flags
flags.DEFINE_string('annotations_dir', 'Annotations',
'(Relative) path to annotations directory.')
flags.DEFINE_string('record_dir', '', 'Path to output TFRecord')
flags.DEFINE_string('test_record_file', 'testing.record', 'Testing record filename')
flags.DEFINE_string('train_record_file', 'training.record', 'Training record filename')
flags.DEFINE_string('label_map_file', '',
'label map proto file')
flags.DEFINE_boolean('ignore_difficult_instances', False, 'Whether to ignore '
'difficult instances')
flags.DEFINE_boolean('view_mode', False, 'View mode enable')
flags.DEFINE_float('image_scale_factor',1.0,'image scale factor')
flags.DEFINE_string('split_label', 'none', 'Name of the label to use for split. \'none\' defines no split')
FLAGS = flags.FLAGS
logging.basicConfig(filename='build_tf_records.log', level=logging.DEBUG)
def list_files(basePath, validExts=(".jpg", ".jpeg", ".png", ".bmp", ".tif", ".tiff"), contains=None):
# loop over the directory structure
for (rootDir, dirNames, filenames) in os.walk(basePath, followlinks=True):
# loop over the filenames in the current directory
for filename in filenames:
# if the contains string is not none and the filename does not contain
# the supplied string, then ignore the file
if contains is not None and filename.find(contains) == -1:
continue
# determine the file extension of the current file
ext = filename[filename.rfind("."):].lower()
# check to see if the file is an image and should be processed
if ext.endswith(validExts):
# construct the path to the image and yield it
imagePath = os.path.join(rootDir, filename).replace(" ", "\\ ")
yield imagePath
def create_train_test_split(annotations_dir):
xmlVerifiedPaths = []
xmlPaths = list_files(annotations_dir, validExts=(".xml"))
# Read each xml file and check if the annotation has been verified.
# If it has, then add to the verified list
for xmlPath in xmlPaths:
xmlFile = open(xmlPath, "r")
xmlString = xmlFile.read()
xmlFile.close()
m = re.search(r"<annotation.*?verified=\"yes\"", xmlString)
if m != None:
xmlVerifiedPaths.append(xmlPath)
# create training and testing splits from our data dictionary
(trainFiles, testFiles) = train_test_split(list(xmlVerifiedPaths),
test_size=0.15, random_state=42)
return (trainFiles, testFiles)
# generate new bounding box for cropped image
# Return the bottomBox box co-ordinates relative to the cropped topBox box
# warn if the bottomBox box is outside the cropped topBox box
def getBox(topBoxXMin, topBoxYMin, topBoxXMax, topBoxYMax, filePath, xmin, ymin, xmax, ymax):
if topBoxXMin > xmin:
xmin = topBoxXMin
print("[WARNING] topBoxXMin > xmin in \"{}\"".format(filePath))
if topBoxYMin > ymin:
ymin = topBoxYMin
print("[WARNING] topBoxYMin > ymin in \"{}\"".format(filePath))
if topBoxYMax < ymax:
ymax = topBoxYMax
print("[WARNING] topBoxYMax < ymax in \"{}\"".format(filePath))
if topBoxXMax < xmax:
xmax = topBoxXMax
print("[WARNING] topBoxXMax < xmax in \"{}\"".format(filePath))
return xmin - topBoxXMin, ymin - topBoxYMin, xmax - topBoxXMin, ymax - topBoxYMin
def genSquareImage(image):
debugFlag = False
blue = image[...,0]
green = image[...,1]
red = image[...,2]
blueAv = np.sum(blue)/ blue.size
greenAv = np.sum(green)/ green.size
redAv = np.sum(red)/ red.size
dimMax = max(image.shape[0], image.shape[1])
imageOut = np.empty((dimMax,dimMax,3), dtype=np.uint8)
imageOut[...,0] = np.uint8(blueAv)
imageOut[...,1] = np.uint8(greenAv)
imageOut[...,2] = np.uint8(redAv)
if image.shape[0] <= image.shape[1]:
imageOut[0:image.shape[0],...] = image
else:
imageOut[:,0:image.shape[1],...] = image
#debugFlag = True
return imageOut, debugFlag
# Convert XML derived dict to tf.Example proto.
# Generate either an TF example of a labelled topBox, or the labelled bottomBoxes within the topBox.
# The labelled topBox will use the entire image at 'image_path', but the labelled bottomBoxes will
# use a cropped topBox from the image at 'image_path'
# Args:
# split_top: Split out the top boxes (True), bottom boxes (False), or all boxes (None)
# split_label: Top level label to split on
# view_mode: Enable image display
# imageScaleFactor: Factor to scale down the images. Typically only used to scale down the
# images containing topBoxes. Mainly required for records that will be used for SSD training. SSD training
# can easily run out of memory, and crash, if the images in the record file are too large. imageScaleFactor = 0.4
# works for desktop with 16GB of RAM and TitanX with 12GB of RAM
# dataObjects: dict holding PASCAL XML fields for image labels
# ignore_difficult_instances: Whether to skip difficult instances in the
# dataset (default: False).
# dataFileName: filename extracted from xml file. I think this is the image file name
# label_map_dict: A map from string label names to integers ids.
# Returns:
# example: The converted tf.Example.
def dict_to_tf_example(split_top, split_label, view_mode, imageScaleFactor, dataObjects,
ignore_difficult_instances, image_path,
dataFileName, label_map_dict):
debugFlag = False
# create temporary files for storing images
imageTempFile = tempfile.NamedTemporaryFile(suffix='.jpg')
imageTempFileName = imageTempFile.name
if split_top != True and split_top != False:
# open the image, get the height and width, and copy the image to temporary file
imageFull = cv2.imread(image_path)
imageHeight, imageWidth = imageFull.shape [:2]
height_scaled, width_scaled = imageHeight, imageWidth
cv2.imwrite(imageTempFileName, imageFull)
else:
# Load as opencv image, square, resize and write to temporary file
imageFull = cv2.imread(image_path)
imageSquare, debugFullImageFlag = genSquareImage(imageFull)
imageHeight, imageWidth = imageSquare.shape [:2]
width_scaled = int(imageWidth * imageScaleFactor)
height_scaled = int(imageHeight * imageScaleFactor)
imageResized = imutils.resize(imageSquare, width=int(imageWidth * imageScaleFactor))
cv2.imwrite(imageTempFileName, imageResized)
# if bottomBoxes selected, then crop the topBox from the image, and overwrite the image, image width, and image height
# with the topBox image, PIW, and PIH
topBoxXMin = 0
topBoxYMin = 0
topBoxXMax = 0
topBoxYMax = 0
if split_top == False:
topBoxFound = False
for obj in dataObjects:
if obj['name'] == split_label:
topBoxXMin = int(obj['bndbox']['xmin'])
topBoxYMin = int(obj['bndbox']['ymin'])
topBoxXMax = int(obj['bndbox']['xmax'])
topBoxYMax = int(obj['bndbox']['ymax'])
topBoxImage = imageSquare[topBoxYMin: topBoxYMax,
topBoxXMin: topBoxXMax,...]
topBoxImage, debugFlag = genSquareImage(topBoxImage)
cv2.imwrite(imageTempFileName, topBoxImage)
imageHeight, imageWidth = topBoxImage.shape[:2]
width_scaled = int(imageWidth)
height_scaled = int(imageHeight)
topBoxFound = True
continue
if topBoxFound == False:
print("[ERROR] No top level box found in \"{}\"".format(image_path))
quit()
# open image file as tensorflow compatible. Check if image file is jpeg format
if view_mode == True or debugFlag == True:
cvImage = cv2.imread(imageTempFileName)
with tf.gfile.GFile(imageTempFileName, 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = PIL.Image.open(encoded_jpg_io)
if image.format != 'JPEG':
raise ValueError('Image format not JPEG')
key = hashlib.sha256(encoded_jpg).hexdigest()
# init the attribute lists
xmins = []
ymins = []
xmaxs = []
ymaxs = []
classes = []
classes_text = []
truncated = []
poses = []
difficult_obj = []
# loop over all the labels in the annotation
for obj in dataObjects:
difficult = bool(int(obj['difficult']))
# discard difficult objects
if ignore_difficult_instances and difficult:
continue
# if split_top labels selected, then only generate bounding boxes for labels in split_label
if split_top == True and obj['name'] != split_label:
continue
# if split_top labels not selected, then only generate bounding boxes for labels not in split_label
if split_top == False and obj['name'] == split_label:
continue
# if split bottom level boxes selected, then convert bottom level box co-ordinates to be relative to cropped top box
# else maintain the original box co-ordinates
if split_top == False:
xmin, ymin, xmax, ymax = getBox(topBoxXMin, topBoxYMin, topBoxXMax, topBoxYMax, image_path,
int(obj['bndbox']['xmin']), int(obj['bndbox']['ymin']),
int(obj['bndbox']['xmax']), int(obj['bndbox']['ymax']))
else:
xmin, ymin, xmax, ymax = (int(obj['bndbox']['xmin']), int(obj['bndbox']['ymin']),
int(obj['bndbox']['xmax']), int(obj['bndbox']['ymax']))
# Normalize box co-ordinates
xmins.append(float(xmin) / imageWidth)
ymins.append(float(ymin) / imageHeight)
xmaxs.append(float(xmax) / imageWidth)
ymaxs.append(float(ymax) / imageHeight)
# Add info to object attribute lists
difficult_obj.append(int(difficult))
classes_text.append(obj['name'].encode('utf8'))
classes.append(label_map_dict[obj['name']])
truncated.append(int(obj['truncated']))
poses.append(obj['pose'].encode('utf8'))
# if view mode is enabled, then add top bounding boxes, bottom bounding boxes bottom box labels to the image
if view_mode == True or debugFlag == True:
# denormalize the bounding box coordinates, and add bbox rect to image
startX = int(xmins[-1] * width_scaled)
startY = int(ymins[-1] * height_scaled)
endX = int(xmaxs[-1] * width_scaled)
endY = int(ymaxs[-1] * height_scaled)
# if topBox box then display the bbox in red
if classes[-1] == 1:
color = (0,0,255)
# else display the bottom box in green and display the bottom labels
else:
color = (0,255,0)
text = str(classes_text[-1])
m = re.match(r"b.*?(\w+)", text)
cv2.putText(cvImage, m.group(1), (startX, startY), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)
# draw the bounding box on the image
cv2.rectangle(cvImage, (startX, startY), (endX, endY),
color, 1)
# display the labelled image
if view_mode == True or debugFlag == True:
cv2.imshow("Image", cvImage)
cv2.imwrite("myImage.jpg",cvImage)
cv2.waitKey(0)
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height_scaled),
'image/width': dataset_util.int64_feature(width_scaled),
'image/filename': dataset_util.bytes_feature(
dataFileName.encode('utf8')),
'image/source_id': dataset_util.bytes_feature(
dataFileName.encode('utf8')),
'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
'image/object/difficult': dataset_util.int64_list_feature(difficult_obj),
'image/object/truncated': dataset_util.int64_list_feature(truncated),
'image/object/view': dataset_util.bytes_list_feature(poses),
}))
return example
def getImagePath(xmlFilePath, imageFolder, imageFileName):
# generate path to image file associated with the annotation
# Assumes that annotations and images are in seperate directories, and they are both
# sub-directories of the same root directory.
# eg 'dataset/2018_02_24' and 'dataset/2018_02_24_ann'
# The annotation file defines data['folder'], which should be the name of a sub-directory of datset_directory
# If you inspect an xml annotation file, 'folder' specifies a single folder containing the
# corresponding image. 'path' specifies a full absolute path
filePathRoot = xmlFilePath.split(os.sep)
filePathRoot = filePathRoot [:-2]
filePathRoot = (os.sep).join(filePathRoot)
filePathRoot = os.path.join(filePathRoot, imageFolder)
image_path = os.path.join(filePathRoot, imageFileName)
return image_path
# Create TF records. imageScaleFactor not used if split_label == 'none'
def create_record(xmlList, label_map_file, recordFilePath, imageScaleFactor, split_enable, split_label, view_mode=False,
ignore_difficult_instances=False):
# for every xml file, read the annotation and the image file, and add to the record file
if view_mode == False:
writer = tf.python_io.TFRecordWriter(recordFilePath)
label_map_dict = label_map_util.get_label_map_dict(label_map_file)
logging.info('Reading from dataset.')
for idx, xmlFilePath in enumerate(xmlList):
if idx % 100 == 0:
logging.info('On annotation %d of %d', idx, len(xmlList))
with tf.gfile.GFile(xmlFilePath, 'r') as fid:
xml_str = fid.read()
xml = etree.fromstring(xml_str)
data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']
image_path = getImagePath(xmlFilePath, data['folder'], data['filename'])
if split_enable == True:
tf_example_top = dict_to_tf_example(True, split_label, view_mode,
imageScaleFactor, data['object'], ignore_difficult_instances, image_path,
data['filename'], label_map_dict)
tf_example_bottom = dict_to_tf_example(False, split_label, view_mode,
1.0, data['object'], ignore_difficult_instances, image_path,
data['filename'], label_map_dict)
else:
tf_example_all = dict_to_tf_example(None, split_label, view_mode,
1.0, data['object'], ignore_difficult_instances, image_path,
data['filename'], label_map_dict)
if view_mode == False:
if split_enable == True:
writer.write(tf_example_top.SerializeToString())
writer.write(tf_example_bottom.SerializeToString())
else:
writer.write(tf_example_all.SerializeToString())
if view_mode == False:
writer.close()
def main(_):
annotations_dir = FLAGS.annotations_dir
label_map_file = FLAGS.label_map_file
view_mode = FLAGS.view_mode
imageScaleFactor = FLAGS.image_scale_factor
split_label = FLAGS.split_label
if split_label.lower() == 'none':
split_enable = False
fileNumMult = 1
else:
split_enable = True
fileNumMult = 2
# split the dataset into training data and testing data
# Note that we are splitting the xml annotation files
# If an image does not have a corresponding annotation file
# it will not be used
(trainList,testList) = create_train_test_split(annotations_dir)
print("[INFO] Found {} annotation files".format(len(trainList) + len(testList)))
print("[INFO] Splitting into {} training files, and {} testing files".format(len(trainList), len(testList)))
print("[INFO] Splitting labels based on top level label: \'{}\'".format(split_label))
print("[INFO] If split_label != \'none\', then the TF Records will contain double the number of annotation files")
print("[INFO] For license plate example, every annotation file results in a separate plate and 'plate chars' pair")
# create the training record
trainingFilePath = os.path.join(FLAGS.record_dir , FLAGS.train_record_file)
print("[INFO] Writing \"{}\", containing {} images".format(trainingFilePath, len(trainList)*fileNumMult))
create_record(trainList, label_map_file,
trainingFilePath, imageScaleFactor, split_enable, split_label, view_mode=view_mode,
ignore_difficult_instances=FLAGS.ignore_difficult_instances)
# create the testing record
testingFilePath = os.path.join(FLAGS.record_dir , FLAGS.test_record_file)
print("[INFO] Writing \"{}\", containing {} images".format(testingFilePath, len(testList)*fileNumMult))
create_record(testList, label_map_file,
testingFilePath, imageScaleFactor, split_enable, split_label, view_mode=view_mode,
ignore_difficult_instances=FLAGS.ignore_difficult_instances)
if __name__ == '__main__':
tf.app.run()