-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·390 lines (313 loc) · 9.89 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#!/usr/bin/env python
RUN = True
EXPLORE = False
import librosa, librosa.display
import math
import os
import matplotlib.pyplot as plt
SAMPLE_RATE = 22050
def load_sound(filename):
# load the sound at the default sample rate 22050 HZ
sound, sr = librosa.load(
filename
)
assert sr == SAMPLE_RATE
return sound, sr
# EXPERIMENT LATER: For now, we have 1 sec of sample, but it makes no
# sense to do this, because the sounds usually take up to 3 seconds
# approximately. In the reference project on speech recognition, they were
# using the dataset that had 1 sec words in each track.
# TODO: Completely remove segmenting!!! It is useless here.
NUM_FRAMES = 1
frame_length_in_samples = int(SAMPLE_RATE / NUM_FRAMES)
print(frame_length_in_samples)
def extract_mfccs_from_track(sound, sr):
mfccs = []
# calculate the MFCCs over the frames
for i in range(NUM_FRAMES):
start_sample = i * frame_length_in_samples
end_sample = start_sample + frame_length_in_samples
print("{}:{}".format(start_sample, end_sample))
frame = sound[start_sample:end_sample]
mfcc = librosa.feature.mfcc(
frame,
sr,
# may be increased to get more granular information, but 13 is
# the minimum value
n_mfcc = 13,
# these are somewhat magic constants; IDK what they mean.
# It seems redundant to me. TODO: check the Slack channel,
# in case they anser.
n_fft = 2048,
hop_length = 512,
)
assert 13 == len(mfcc)
print("hm frames in this sample {}",
frame_length_in_samples / 512
)
num_mfcc_vectors_per_segment = math.ceil(
frame_length_in_samples / 512
)
# librosa.display.specshow(mfcc)
# plt.show()
mfcc = mfcc.T
# should always be the same, but in the video we
# check if the length is not equal to expected length.
# this is the number of frames that we obtained in one segment
assert len(mfcc) == num_mfcc_vectors_per_segment
print("Have {} frames inside of this segment, all of them must\n"
"be seen on the plot", len(mfcc))
# tolist() so that we can store this in JSON
mfccs.append(mfcc.tolist())
return mfccs
DATA_NEEDED_CNT = 3000
def prepare_data(root, path_to_csv):
data = {
# a range of mfccs that represent the sound
"mfcc": [],
# labels
"label": [],
# filenames
"name": []
}
entries_counter = 0
# map filename to mfccs, and label
for i, (path, dirnames, filenames) in enumerate(os.walk(root)):
if not path.endswith('audio'):
continue
for f in filenames:
if not f.endswith('wav'):
continue
print("file name: {}", f.split(".")[0])
# find the label of the record
with open(path_to_csv, 'r') as meta_data:
for s in meta_data:
splits = s.split(',')
if splits[0] == f:
label = splits[3]
break
print(label)
print(f"{path}/{f}")
# calculate mfccs for this file
sound, sr = load_sound(f"{path}/{f}")
mfccs = extract_mfccs_from_track(sound, sr)
print("- hm segments we have in this mfcc {}", len(mfccs))
data["name"].append(f)
data["label"].append(label)
data["mfcc"].append(mfccs)
entries_counter += 1
if entries_counter == DATA_NEEDED_CNT:
break
return data
import json
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow.keras as keras
# store the data in a file - UNCOMMENT WHEN RUNNING FOR THE FIRST TIME
'''
data = prepare_data('.', 'kaggle_ds/esc50.csv')
print("data prepared")
with open('data.json', 'w') as out:
json.dump(data, out)
'''
def plot_training_results(history):
fig, axs = plt.subplots(2)
axs[0].plot(history.history['accuracy'], label = 'train accuracy')
axs[0].plot(history.history['val_accuracy'], label = 'test accuracy')
axs[0].set_ylabel('Accuracy')
axs[0].legend(loc = 'lower right')
axs[0].set_title('Accuracy eval')
axs[1].plot(history.history['loss'], label = 'train error')
axs[1].plot(history.history['val_loss'], label = 'test error')
axs[1].set_ylabel('Error')
axs[1].legend(loc = 'lower right')
axs[1].set_title('Error eval')
plt.show()
# rescale MFCCs into 0-1 range
def rescaled_mfcc():
with open('data.json') as f:
frames = []
data = json.load(f)
# max and min values from the whole range
min_ = np.min(data['mfcc'])
max_ = np.max(data['mfcc'])
rescaled_mfcc = data['mfcc']
'''
print("Small check")
print(len(rescaled_mfcc))
print(len(rescaled_mfcc[0]))
print(len(rescaled_mfcc[0][0]))
print(len(rescaled_mfcc[0][0][0]))
'''
for i in rescaled_mfcc:
i = np.array(i)
i = np.reshape(
i,
(i.shape[1],
i.shape[2]
)
)
proper_shape = i.shape
i = np.reshape(
i,
np.prod(i.shape)
)
i = np.array([(item - min_) / (max_ - min_) for item in i])
i = np.reshape(
i,
proper_shape
)
frames.append(
[
i.tolist()
]
)
'''
print("Big check")
print(len(frames))
print(len(frames[0]))
print(len(frames[0][0]))
print(len(frames[0][0][0]))
'''
return frames
# trying to come up with new more informative features
first = 'kaggle_ds/audio/audio/1-100032-A-0.wav'
second = 'kaggle_ds/audio/audio/1-100038-A-14.wav'
def examine(filename):
sound, sr = librosa.load(filename, SAMPLE_RATE)
assert sr == SAMPLE_RATE
os.system('aplay {}'.format(filename))
mfcc = librosa.feature.mfcc(
sound, sr
)
librosa.display.specshow(
mfcc
)
plt.show()
if EXPLORE == True:
examine(first)
examine(second)
class should_not_run(Exception):
pass
# now read the data
with open('data.json', 'r') as data:
# skip, if not wanted
if not RUN:
raise should_not_run
data_json = json.load(data)
# rescale the data
data_json['mfcc'] = rescaled_mfcc()
def fill_one_hot(answer_index, total_classes):
one_hot = []
for i in range(total_classes):
if answer_index == i:
one_hot.append(1)
else:
one_hot.append(0)
return one_hot
current_code = 0
vis = []
label2code = {}
for k in data_json['label']:
# print(k)
if k in vis:
continue
else:
label2code[k] = current_code
current_code += 1
vis.append(k)
one_hots = []
for i in range(len(label2code.keys())):
# print(i)
for j in label2code.keys():
# print("{} {}".format(j, label2code[j]))
if label2code[j] == i:
one_hots.append(
fill_one_hot(i, len(label2code.keys()))
)
X = np.array(
data_json['mfcc']
)
y = np.array(data_json['label'])
# convert to one-hots
y = np.array(list(map(
lambda x: one_hots[label2code[x]],
y
)))
# TODO: refactor - remove the excessive dimension that comes from
# segmenting the tracks - there is no need to split a 5second sound!
# For now just reshape this array, but fix later.
X = np.reshape(X,
(X.shape[0],
X.shape[2],
X.shape[3]
)
)
# Split the data into test and train sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.3)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
# preparing for conv net
'''
X_train = np.reshape(
X_train,
(
X_train.shape[0],
X_train.shape[1],
X_train.shape[2],
1
)
)
X_test = np.reshape(
X_test,
(
X_test.shape[0],
X_test.shape[1],
X_test.shape[2],
1
)
)
'''
model = keras.Sequential([
# input with LSTM
keras.layers.LSTM(
64,
input_shape = (X.shape[1], X.shape[2]),
return_sequences = True
),
# 1 more LSTM, as in the video
keras.layers.LSTM(64),
# dense layer
keras.layers.Dense(64, activation = 'relu'),
keras.layers.Dropout(0.3),
# output
keras.layers.Dense(len(vis),
activation = 'softmax'
)
])
model.summary()
optimizer = keras.optimizers.Adam(learning_rate = 0.0001)
model.compile(optimizer,
# ATTENTION: Not sparse! In the tutorial, they use
# sparse, because they don't do one-hot encoding!
loss = 'categorical_crossentropy',
metrics = ['accuracy']
)
print(X_train)
print(X_test)
print(y_train)
print(y_test)
history = model.fit(
X_train, y_train, validation_data = (X_test, y_test),
epochs = 50,
# !!!!!!! BATHCH SIZE IS IMPORTANT
# previously, the value of 32 causes an error, because batch was
# greater than 10 - the dimensionality (first index) of my toy
# dataset. OTOH, in the tutorial, they did not have any probelm
# because their dataset was already huge.
batch_size = 1
)
plot_training_results(history)