-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLPF_4rd.c
549 lines (466 loc) · 17.1 KB
/
LPF_4rd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
#include "LPF.h"
#include <stdlib.h> // For malloc/free
#include <string.h> // For memset
#include <stdio.h> // For test case I/O
float LPF_coefficients[30] =
{
// //10 order elliptic type filter
// //a0,a1,a2,b0,b1,b2,
//Sect 0
-1.000000000000000000,1.649436517750981100,-0.695913509734196634,0.076723277156391434,-0.107554445726074088,0.076723277156391434,
//Sect 1
-1.000000000000000000,1.614269310935006140,-0.769515376233997683,0.232019091276370687,-0.310745790288338153,0.232019091276370687,
//Sect 2
-1.000000000000000000,1.573650790546480270,-0.860485349668433819,0.333379927041684565,-0.383534925533793369,0.333379927041684565,
//Sect 3
-1.000000000000000000,1.549981301439699700,-0.930917734471075287,0.263966572302143321,-0.151790554403467504,0.263966572302143321,
//Sect 4
-1.000000000000000000,1.550877775063175920,-0.979531652700193933,0.131208934725317389,0.160841671651680534,0.13120893472531738,
};
int16_t LPF_quarter_coefficients[30] = // the filter coefficients is 1/4 of sample frequency for 16 bit data
{
-128, 211, -89, 118, -165, 118,//a:q(7), b:q(10)*1.5
-128, 207, -98, 178, -239, 178,//a:q(7), b:q(9) *1.5
-128, 201,-110, 273, -314, 273,//a:q(7), b:q(9) *1.6
-128, 198,-119, 405, -233, 405,//a:q(7), b:q(10)*1.5
-128, 199,-125, 202, 247, 202,//a:q(7), b:q(10)*1.5
};
LPFType *LPF_create( void )
{
LPFType *result = (LPFType *)malloc( sizeof( LPFType ) ); // Allocate memory for the object
LPF_init( result ); // Initialize it
return result; // Return the result
}
void LPF_destroy( LPFType *pObject )
{
free( pObject );
}
void LPF_init( LPFType * pThis )
{
LPF_reset( pThis );
}
void LPF_reset( LPFType * pThis )
{
memset( &pThis->state, 0, sizeof( pThis->state ) ); // Reset state to 0
pThis->output = 0; // Reset output
pThis->nb_channel = 0;
}
void LPF_volume(uint16_t volume, uint16_t bit_depth)
{
//init the LPF coefficients
int i, j;
// if(volume >= Max_volume) volume = Max_volume;
j = 1536 * volume / Max_volume;
i = 3;
while(i < 6) {
LPF_quarter_coefficients[i] = LPF_coefficients[i] * j;
i++;
}
j = 768 * volume / Max_volume;
i = 9;
while(i < 12) {
LPF_quarter_coefficients[i] = LPF_coefficients[i] * j;
i++;
}
j = 819 * volume / Max_volume;
i = 15;
while(i < 18) {
LPF_quarter_coefficients[i] = LPF_coefficients[i] * j;
i++;
}
j = 1536* volume / Max_volume;
i = 21;
while(i < 24) {
LPF_quarter_coefficients[i] = LPF_coefficients[i] * j;
i++;
}
j = 1536 * volume / Max_volume;
i = 27;
while(i < 30) {
LPF_quarter_coefficients[i] = LPF_coefficients[i] * j;
i++;
}
}
uint32_t LPF_filterBlock( LPFType * pThis, int32_t * pInput, int32_t * pOutput, uint32_t count )
{
LPF_executionState executionState; // The executionState structure holds call data, minimizing stack reads and writes
if( ! count ) return 0; // If there are no input samples, return immediately
executionState.pInput = pInput; // Pointers to the input and output buffers that each call to filterBiquad() will use
executionState.pOutput = pOutput; // - pInput and pOutput can be equal, allowing reuse of the same memory.
executionState.count = count; // The number of samples to be processed
executionState.pState = pThis->state; // Pointer to the biquad's internal state and coefficients.
executionState.nb_channel = pThis->nb_channel; //number of audio channel
executionState.pCoefficients = LPF_quarter_coefficients; // Each call to filterBiquad() will advance pState and pCoefficients to the next biquad
// The 1st call to filter1_filterBiquad() reads from the caller supplied input buffer and writes to the output buffer.
// The remaining calls to filterBiquad() recycle the same output buffer, so that multiple intermediate buffers are not required.
LPF_filterBiquad0( &executionState ); // Run biquad #0
executionState.pInput = executionState.pOutput; // The remaining biquads will now re-use the same output buffer.
LPF_filterBiquad1( &executionState ); // Run biquad #1
executionState.pInput = executionState.pOutput;
LPF_filterBiquad2( &executionState ); // Run biquad #2
executionState.pInput = executionState.pOutput;
LPF_filterBiquad3( &executionState ); // Run biquad #3
executionState.pInput = executionState.pOutput;
LPF_filterBiquad4( &executionState ); // Run biquad #4
// At this point, the caller-supplied output buffer will contain the filtered samples and the input buffer will contain the unmodified input samples.
return count; // Return the number of samples processed, the same as the number of input samples
}
//
//void LPF_filterBiquad12( LPF_executionState * pExecState )
//{
// // Read state variables
// int32_t w0, x0, w1[2], w2[2];
// w1[0] = pExecState->pState[0];
// w2[0] = pExecState->pState[1];
// w1[1] = pExecState->pState[2];
// w2[1] = pExecState->pState[3];
// // Read coefficients into work registers
// int16_t a0 = *(pExecState->pCoefficients++);
// int16_t a1 = *(pExecState->pCoefficients++);
// int16_t a2 = *(pExecState->pCoefficients++);
// int16_t b0 = *(pExecState->pCoefficients++);
// int16_t b1 = *(pExecState->pCoefficients++);
// int16_t b2 = *(pExecState->pCoefficients++);
//
// // Read source and target pointers
// int32_t *pInput = pExecState->pInput;
// int32_t *pOutput = pExecState->pOutput;
// int32_t count = pExecState->count;
// int32_t accumulator;
// int16_t i = 0;
// int16_t ch_sel;
// ch_sel = (pExecState->nb_channel == 2)? 1: 0;
// // Loop for all samples in the input buffer
// while( count-- )
// {
// //stereo or mono
// i = count & ch_sel;
//
// // Read input sample
// x0 = *(pInput++);
// // Run feedback part of filter
// accumulator = a2 * ((w2[i])>>7);
// accumulator += a1 * ((w1[i])>>7);
// accumulator -= x0;
//
// w0 = accumulator;
//
// // Run feedforward part of filter
// accumulator = ((w0 * b0));
// accumulator += ((w1[i] * b1));
// accumulator += ((w2[i] * b2));
//
// w2[i] = w1[i]; // Shuffle history buffer
// w1[i] = w0;
//
// // Write output
// *(pOutput++) = accumulator >> 8;
// }
//
//
// // Write state variables
// *(pExecState->pState++) = w1[0];
// *(pExecState->pState++) = w2[0];
// *(pExecState->pState++) = w1[1];
// *(pExecState->pState++) = w2[1];
//}
void LPF_filterBiquad0( LPF_executionState * pExecState )
{
// Read state variables
int32_t w0, x0, w1[2], w2[2];
w1[0] = pExecState->pState[0];
w2[0] = pExecState->pState[1];
w1[1] = pExecState->pState[2];
w2[1] = pExecState->pState[3];
// Read coefficients into work registers
int16_t a0 = *(pExecState->pCoefficients++);
int16_t a1 = *(pExecState->pCoefficients++);
int16_t a2 = *(pExecState->pCoefficients++);
int16_t b0 = *(pExecState->pCoefficients++);
int16_t b1 = *(pExecState->pCoefficients++);
int16_t b2 = *(pExecState->pCoefficients++);
// Read source and target pointers
int32_t *pInput = pExecState->pInput;
int32_t *pOutput = pExecState->pOutput;
int32_t count = pExecState->count;
int32_t accumulator;
int16_t i = 0;
int16_t ch_sel;
ch_sel = (pExecState->nb_channel == 2)? 1: 0;
// Loop for all samples in the input buffer
while( count-- )
{
//stereo or mono
i = count & ch_sel;
// Read input sample
x0 = *(pInput++);
// Run feedback part of filter
accumulator = a2 * ((w2[i]));
accumulator += a1 * ((w1[i]));
accumulator -= x0 << 3;
w0 = accumulator >> 7;
// Run feedforward part of filter
accumulator = ((w0 * b0));
accumulator += ((w1[i] * b1));
accumulator += ((w2[i] * b2));
w2[i] = w1[i]; // Shuffle history buffer
w1[i] = w0;
// Write output
*(pOutput++) = accumulator >> 7;
}
// Write state variables
*(pExecState->pState++) = w1[0];
*(pExecState->pState++) = w2[0];
*(pExecState->pState++) = w1[1];
*(pExecState->pState++) = w2[1];
}
void LPF_filterBiquad1( LPF_executionState * pExecState )
{
// Read state variables
int32_t w0, x0, w1[2], w2[2];
w1[0] = pExecState->pState[0];
w2[0] = pExecState->pState[1];
w1[1] = pExecState->pState[2];
w2[1] = pExecState->pState[3];
// Read coefficients into work registers
int16_t a0 = *(pExecState->pCoefficients++);
int16_t a1 = *(pExecState->pCoefficients++);
int16_t a2 = *(pExecState->pCoefficients++);
int16_t b0 = *(pExecState->pCoefficients++);
int16_t b1 = *(pExecState->pCoefficients++);
int16_t b2 = *(pExecState->pCoefficients++);
// Read source and target pointers
int32_t *pInput = pExecState->pInput;
int32_t *pOutput = pExecState->pOutput;
int32_t count = pExecState->count;
int32_t accumulator;
int16_t i = 0;
int16_t ch_sel;
ch_sel = (pExecState->nb_channel == 2)? 1: 0;
// Loop for all samples in the input buffer
while( count-- )
{
//stereo or mono
i = count & ch_sel;
// Read input sample
x0 = *(pInput++);
// Run feedback part of filter
accumulator = a2 * ((w2[i]));
accumulator += a1 * ((w1[i]));
accumulator -= x0 << 3;
w0 = accumulator >> 7;
// Run feedforward part of filter
accumulator = ((w0 * b0));
accumulator += ((w1[i] * b1));
accumulator += ((w2[i] * b2));
w2[i] = w1[i]; // Shuffle history buffer
w1[i] = w0;
// Write output
*(pOutput++) = accumulator >> 7;
}
// Write state variables
*(pExecState->pState++) = w1[0];
*(pExecState->pState++) = w2[0];
*(pExecState->pState++) = w1[1];
*(pExecState->pState++) = w2[1];
}
void LPF_filterBiquad2( LPF_executionState * pExecState )
{
// Read state variables
int32_t w0, x0, w1[2], w2[2];
w1[0] = pExecState->pState[0];
w2[0] = pExecState->pState[1];
w1[1] = pExecState->pState[2];
w2[1] = pExecState->pState[3];
// Read coefficients into work registers
int16_t a0 = *(pExecState->pCoefficients++);
int16_t a1 = *(pExecState->pCoefficients++);
int16_t a2 = *(pExecState->pCoefficients++);
int16_t b0 = *(pExecState->pCoefficients++);
int16_t b1 = *(pExecState->pCoefficients++);
int16_t b2 = *(pExecState->pCoefficients++);
// Read source and target pointers
int32_t *pInput = pExecState->pInput;
int32_t *pOutput = pExecState->pOutput;
int32_t count = pExecState->count;
int32_t accumulator;
int16_t i = 0;
int16_t ch_sel;
ch_sel = (pExecState->nb_channel == 2)? 1: 0;
// Loop for all samples in the input buffer
while( count-- )
{
//stereo or mono
i = count & ch_sel;
// Read input sample
x0 = *(pInput++);
// Run feedback part of filter
accumulator = a2 * ((w2[i]));
accumulator += a1 * ((w1[i]));
accumulator -= x0 << 5;
w0 = accumulator >> 7;
// Run feedforward part of filter
accumulator = ((w0 * b0));
accumulator += ((w1[i] * b1));
accumulator += ((w2[i] * b2));
w2[i] = w1[i]; // Shuffle history buffer
w1[i] = w0;
// Write output
*(pOutput++) = accumulator >> 7;
}
// Write state variables
*(pExecState->pState++) = w1[0];
*(pExecState->pState++) = w2[0];
*(pExecState->pState++) = w1[1];
*(pExecState->pState++) = w2[1];
}
void LPF_filterBiquad3( LPF_executionState * pExecState )
{
// Read state variables
int32_t w0, x0, w1[2], w2[2];
w1[0] = pExecState->pState[0];
w2[0] = pExecState->pState[1];
w1[1] = pExecState->pState[2];
w2[1] = pExecState->pState[3];
// Read coefficients into work registers
int16_t a0 = *(pExecState->pCoefficients++);
int16_t a1 = *(pExecState->pCoefficients++);
int16_t a2 = *(pExecState->pCoefficients++);
int16_t b0 = *(pExecState->pCoefficients++);
int16_t b1 = *(pExecState->pCoefficients++);
int16_t b2 = *(pExecState->pCoefficients++);
// Read source and target pointers
int32_t *pInput = pExecState->pInput;
int32_t *pOutput = pExecState->pOutput;
int32_t count = pExecState->count;
int32_t accumulator;
int16_t i = 0;
int16_t ch_sel;
ch_sel = (pExecState->nb_channel == 2)? 1: 0;
// Loop for all samples in the input buffer
while( count-- )
{
//stereo or mono
i = count & ch_sel;
// Read input sample
x0 = *(pInput++);
// Run feedback part of filter
accumulator = a2 * ((w2[i]));
accumulator += a1 * ((w1[i]));
accumulator -= x0 << 5;
w0 = accumulator >> 7;
// Run feedforward part of filter
accumulator = ((w0 * b0));
accumulator += ((w1[i] * b1));
accumulator += ((w2[i] * b2));
w2[i] = w1[i]; // Shuffle history buffer
w1[i] = w0;
// Write output
*(pOutput++) = accumulator >> 7;
}
// Write state variables
*(pExecState->pState++) = w1[0];
*(pExecState->pState++) = w2[0];
*(pExecState->pState++) = w1[1];
*(pExecState->pState++) = w2[1];
}
void LPF_filterBiquad4( LPF_executionState * pExecState )
{
// Read state variables
int32_t w0, x0, w1[2], w2[2];
w1[0] = pExecState->pState[0];
w2[0] = pExecState->pState[1];
w1[1] = pExecState->pState[2];
w2[1] = pExecState->pState[3];
// Read coefficients into work registers
int16_t a0 = *(pExecState->pCoefficients++);
int16_t a1 = *(pExecState->pCoefficients++);
int16_t a2 = *(pExecState->pCoefficients++);
int16_t b0 = *(pExecState->pCoefficients++);
int16_t b1 = *(pExecState->pCoefficients++);
int16_t b2 = *(pExecState->pCoefficients++);
// Read source and target pointers
int32_t *pInput = pExecState->pInput;
int32_t *pOutput = pExecState->pOutput;
int32_t count = pExecState->count;
int32_t accumulator;
int16_t i = 0;
int16_t ch_sel;
ch_sel = (pExecState->nb_channel == 2)? 1: 0;
// Loop for all samples in the input buffer
while( count-- )
{
//stereo or mono
i = count & ch_sel;
// Read input sample
x0 = *(pInput++);
// Run feedback part of filter
accumulator = a2 * ((w2[i]));
accumulator += a1 * ((w1[i]));
accumulator -= x0 << 3;
w0 = accumulator >> 7;
// Run feedforward part of filter
accumulator = ((w0 * b0));
accumulator += ((w1[i] * b1));
accumulator += ((w2[i] * b2));
w2[i] = w1[i]; // Shuffle history buffer
w1[i] = w0;
// Write output
*(pOutput++) = accumulator >> 7;
}
// Write state variables
*(pExecState->pState++) = w1[0];
*(pExecState->pState++) = w2[0];
*(pExecState->pState++) = w1[1];
*(pExecState->pState++) = w2[1];
}
void LPF_filterBiquad_float( LPF_executionState * pExecState )
{
// Read state variables
int32_t w0, x0, w1[2], w2[2];
w1[0] = pExecState->pState[0];
w2[0] = pExecState->pState[1];
w1[1] = pExecState->pState[2];
w2[1] = pExecState->pState[3];
// Read coefficients into work registers
float a0 = *(pExecState->pCoefficients++);
float a1 = *(pExecState->pCoefficients++);
float a2 = *(pExecState->pCoefficients++);
float b0 = *(pExecState->pCoefficients++);
float b1 = *(pExecState->pCoefficients++);
float b2 = *(pExecState->pCoefficients++);
// Read source and target pointers
int32_t *pInput = pExecState->pInput;
int32_t *pOutput = pExecState->pOutput;
int32_t count = pExecState->count;
int32_t accumulator;
int16_t i = 0;
int16_t ch_sel;
ch_sel = (pExecState->nb_channel == 2)? 1: 0;
// Loop for all samples in the input buffer
while( count-- )
{
//stereo or mono
i = count & ch_sel;
// Read input sample
x0 = *(pInput++);
// Run feedback part of filter
accumulator = a2 * w2[i];
accumulator += a1 * w1[i];
accumulator -= x0;
w0 = accumulator;
// Run feedforward part of filter
accumulator = w0 * b0;
accumulator += w1[i]* b1;
accumulator += w2[i]* b2;
w2[i] = w1[i]; // Shuffle history buffer
w1[i] = w0;
// Write output
*(pOutput++) = accumulator;
}
// Write state variables
*(pExecState->pState++) = w1[0];
*(pExecState->pState++) = w2[0];
*(pExecState->pState++) = w1[1];
*(pExecState->pState++) = w2[1];
}