-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathconfig-jetson-tx2.ini
163 lines (146 loc) · 4.71 KB
/
config-jetson-tx2.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
[App]
HistoricalDataMode = False
HasBeenConfigured = False
Resolution = 640,480
Encoder = videoconvert ! video/x-raw,format=I420 ! x264enc speed-preset=ultrafast
MaxProcesses = 1
; WIP https://github.com/neuralet/neuralet/issues/91
;Encoder: nvvidconv ! nvv4l2h264enc
; attn: deepstream has nvvideoconvert which should be used with deepstream pipelines
DashboardURL = https://app.lanthorn.ai/
DashboardAuthorizationToken =
SlackChannel = lanthorn-notifications
; OccupancyAlertsMinInterval time is measured in seconds (if interval < 0 then no occupancy alerts are triggered)
OccupancyAlertsMinInterval = 180
MaxThreadRestarts = 5
GlobalReportingEmails =
GlobalReportTime = 06:00
DailyGlobalReport = False
WeeklyGlobalReport = False
HeatmapResolution = 150,150
LogPerformanceMetrics = False
LogPerformanceMetricsDirectory = /repo/data/processor/static/data/performace-metrics
EntityConfigDirectory = /repo/data/processor/config
ProcessAreas = True
[API]
Host = 0.0.0.0
Port = 8000
UseAuthToken = False
SSLEnabled = False
SSLCertificateFile =
SSLKeyFile =
[CORE]
Host = 0.0.0.0
QueuePort = 8010
QueueAuthKey = shibalba
[Area_0]
Id = 0
Name = Kitchen
Cameras = 0
NotifyEveryMinutes = 0
Emails =
EnableSlackNotifications = False
OccupancyThreshold = 300
ViolationThreshold = 60
DailyReport = False
DailyReportTime = 06:00
[Source_0]
VideoPath = /repo/data/softbio_vid.mp4
Tags = kitchen
Name = Garden-Camera
Id = 0
Emails =
EnableSlackNotifications = False
NotifyEveryMinutes = 0
ViolationThreshold = 60
; Distance measurement method:
; - CalibratedDistance: calculate the distance with 3-d transformed points, note that by choosing this method you should specify the inverse calibration matrix of your environment.
; - CenterPointsDistance: compare center of pedestrian boxes together
; - FourCornerPointsDistance: compare four corresponding points of pedestrian boxes and get the minimum of them.
; - If left empty the DefaultDistMethod will be employed
DistMethod =
DailyReport = False
DailyReportTime = 06:00
LiveFeedEnabled = True
[Detector]
; Supported devices: Jetson , EdgeTPU, Dummy, x86
Device = Jetson
; Name can be ssd_mobilenet_v2_coco which is trained on coco, or
; ssd_mobilenet_v2_pedestrian_softbio trained by neuralet on softbio dataset or it can be openpifpaf_tensorrt which is a pose estimation model
Name = openpifpaf_tensorrt
; ImageSize should be 3 numbers seperated by commas with no spaces, it should be 300,300,3 for ssd_mobilenet and multiples of 16 plus 1 for openpifpaf_tensorrt ( 321,193,3 and 641,369,3 is supported on jetson devices for now)
ImageSize = 321,193,3
ModelPath =
ClassID = 0
MinScore = 0.25
TensorrtPrecision= 16
[Classifier]
Device = Jetson
Name = OFMClassifier
ModelPath = /repo/data/tensorrt/ofm_face_mask_d16.trt
ImageSize = 45,45,3
MinScore = 0.75
TensorrtPrecision= 16
MinImageSize =
[Tracker]
Name = IOUTracker
; Number of times tracker was lost while tracking
MaxLost = 5
TrackerIOUThreshold = 0.5
[SourcePostProcessor_0]
Name = objects_filtering
NMSThreshold = 0.98
Enabled = True
[SourcePostProcessor_1]
Name = social_distance
; Default distance measurement method (used when no DistMethod is specified for the source):
; - CalibratedDistance: calculate the distance with 3-d transformed points, note that by choosing this method you should specify the inverse calibration matrix of your environment.
; - CenterPointsDistance: compare center of pedestrian boxes together
; - FourCornerPointsDistance: compare four corresponding points of pedestrian boxes and get the minimum of them.
DefaultDistMethod = CenterPointsDistance
DistThreshold = 150
Enabled = True
[SourcePostProcessor_2]
Name = anonymizer
Enabled = True
[SourceLogger_0]
Name = video_logger
Enabled = True
[SourceLogger_1]
Name = s3_logger
; Screenshot time is measured in minutes (if period <= 0 then no screenshots are uploaded)
ScreenshotPeriod = 0
ScreenshotS3Bucket = my-screenshot-bucket
Enabled = False
[SourceLogger_2]
Name = file_system_logger
TimeInterval = 0.5
LogDirectory = /repo/data/processor/static/data/sources
; Screenshot time is measured in minutes (if period <= 0 then no screenshots are uploaded)
ScreenshotPeriod = 5
ScreenshotsDirectory = /repo/data/processor/static/screenshots
Enabled = True
[SourceLogger_3]
Name = web_hook_logger
Endpoint =
Authorization =
TimeInterval = 0.5
Enabled = False
SendingInterval = 5
[AreaLogger_0]
Name = file_system_logger
LogDirectory = /repo/data/processor/static/data/areas
Enabled = True
; Enable the PeriodicTask_0 if you want to generate metrics
[PeriodicTask_0]
Name = metrics
Enabled = True
; Expressed in minutes
LiveInterval = 10
; Enable the PeriodicTask_1 if you want to backup your files in S3
[PeriodicTask_1]
Name = s3_backup
Enabled = False
; Expressed in minutes
BackupInterval = 30
BackupS3Bucket = your-s3-bucket