-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgamma.tex
206 lines (162 loc) · 12.3 KB
/
gamma.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
\documentclass[12pt,a4paper]{article}
\setcounter{secnumdepth}{0}
\usepackage{gensymb}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumitem}
\usepackage{graphicx}
\usepackage{sansmath}
\usepackage{pst-eucl}
\usepackage[UKenglish]{isodate}
\usepackage[UKenglish]{babel}
\usepackage{float}
\usepackage[numbered,framed]{matlab-prettifier}
\usepackage[T1]{fontenc}
\usepackage{setspace}
\usepackage{sectsty}
\usepackage[colorlinks=true,linkcolor=blue,urlcolor=black,bookmarksopen=true]{hyperref}
\newcommand{\E}{\mathbb{E}}
\newcommand{\eqn}[1]{Equation \ref{#1}}
\newcommand{\ovY}{\overline{Y}}
\newcommand{\wmu}{\widehat{\mu}}
\newcommand{\wst}{\widehat{\sigma^2}}
\newcommand{\B}{\mathbb{B}}
\newcommand{\RR}{\mathrm{RR}}
\newcommand{\var}{\mathrm{var}}
\newcommand{\MSE}{\mathrm{MSE}}
\newcommand{\SST}{\mathrm{SST}}
\newcommand{\MST}{\mathrm{MST}}
\newcommand{\SSE}{\mathrm{SSE}}
\newcommand{\wal}{\widehat{\alpha}}
\newcommand{\wbe}{\widehat{\beta}}
\newcommand{\SSS}{\mathrm{SS}}
\newcommand{\GamD}{\mathrm{Gamma}}
\newcommand{\SSTotal}{\mathrm{Total\hspace{0.1cm}SS}}
\newcommand{\cov}{\mathrm{cov}}
\newcommand{\eff}{\mathrm{eff}}
\newcommand{\CM}{\mathrm{CM}}
\newcommand{\expy}{\exp\left(\dfrac{\overline{Y}}{\wbe}\right)}
\newcommand{\corr}{\mathrm{corr}}
\newcommand{\Poisson}{\mathrm{Poisson}}
\newcommand{\Binomial}{\mathrm{Binomial}}
\setlength{\parindent}{0pt}
\renewcommand{\baselinestretch}{2.0}
\usepackage[margin=0.1in]{geometry}
\title{Likelihood-ratio test for samples from gamma-distributed populations}
\author{Brenton Horne}
\begin{document}
\maketitle
\tableofcontents
\newpage
\section{Definitions}
Let $Y_{ij}$ denote the $j$th observation from the $i$th treatment group, where $i=1, 2, 3, ..., m$ and $j=1, 2, 3, ..., n_i$.
Let:
\begin{align*}
n &= \sum_{i=1}^m n_i \\
\overline{Y} &= \dfrac{1}{n} \sum_{i=1}^m \sum_{j=1}^{n_i} Y_{ij} \\
\overline{Y}_i &= \dfrac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}.
\end{align*}
\section{Hypotheses}
$H_0$: $Y_{ij} \sim \GamD(\alpha, \beta)$ \\
$H_A$: $Y_{ij} \sim \GamD(\alpha_i, \beta_i)$, where $\alpha_i \neq \alpha_k$ or $\beta_i \neq \beta_k$ for at least one combination of $i$ and $k$ values.
Let us denote the parameter space under the null hypothesis as $\Omega_0 = \left\{(\alpha, \beta): \hspace{0.1cm} 0 < \alpha, \beta < \infty\right\}$ and the parameter space under the alternative hypothesis as \\$\Omega_a = \left\{(\alpha_i, \beta_i): \hspace{0.1cm} 0 < \alpha_i, \beta_i < \infty,\hspace{0.1cm}\alpha_i \neq \alpha_k \hspace{0.1cm} \mathrm{or}\hspace{0.1cm}\beta_i \neq \beta_k \hspace{0.1cm}\mathrm{for}\hspace{0.1cm}\mathrm{at}\hspace{0.1cm}\mathrm{least}\hspace{0.1cm}\mathrm{one}\hspace{0.1cm}\mathrm{pair}\hspace{0.1cm}\mathrm{of}\hspace{0.1cm}i\hspace{0.1cm}\mathrm{and}\hspace{0.1cm}k \hspace{0.1cm}\mathrm{values}\right\}$. The unrestricted parameter space is therefore $\Omega = \Omega_0 \cup \Omega_a = \left\{(\alpha_i, \beta_i): \hspace{0.1cm} 0 < \alpha_i, \beta_i < \infty\right\}$.
\section{Derivation of the maximum likelihood under the null}
\begin{align}
L(\Omega_0) &= \prod_{i=1}^m \prod_{j=1}^{n_i} \dfrac{1}{\Gamma(\alpha)\beta^{\alpha}} Y_{ij}^{\alpha-1} \exp{\left(-\dfrac{Y_{ij}}{\beta}\right)} \nonumber \\
&= (\Gamma(\alpha)\beta^{\alpha})^{-n} \left(\prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}\right)^{\alpha-1} \exp{\left(-\dfrac{n\overline{Y}}{\beta}\right)} \nonumber \\
&= \left(\Gamma(\alpha)\beta^{\alpha}\exp\left(\dfrac{\overline{Y}}{\beta}\right)\right)^{-n} \left(\prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}\right)^{\alpha-1}. \label{LikNull}
\end{align}
Taking the natural logarithm yields:
\begin{align*}
\ln{L(\Omega_0)} &= -n\ln{\left(\Gamma(\alpha)\beta^{\alpha}\exp\left(\dfrac{\overline{Y}}{\beta}\right)\right)} + (\alpha-1)\sum_{i=1}^m \sum_{j=1}^{n_i} \ln{Y_{ij}}.
\end{align*}
Next we will take the partial derivative with respect to $\alpha$ and set it to zero:
\begin{align}
\dfrac{\partial \ln{L(\Omega_0)}}{\partial \alpha} \Bigm\lvert_{\alpha=\widehat{\alpha}, \beta=\widehat{\beta}} &= -n \left(\dfrac{\Gamma'(\wal)\wbe^{\wal}\exp\left(\dfrac{\overline{Y}}{\wbe}\right) + \Gamma(\wal)(\ln{\wbe})\wbe^{\wal}\exp\left(\dfrac{\overline{Y}}{\wbe}\right)}{\Gamma(\wal)\wbe^{\wal}\exp\left(\dfrac{\overline{Y}}{\wbe}\right)}\right) + \sum_{i=1}^{m} \sum_{j=1}^{n_i} \ln{Y_{ij}} =0 \nonumber \\
\therefore\hspace{0.2cm} 0 &= -n(\psi^{(0)}(\wal)+\ln{\wbe}) + \sum_{i=1}^{m} \sum_{j=1}^{n_i} \ln{Y_{ij}}. \label{MLENullAlpha}
\end{align}
Where $\psi^{(0)}(\wal)$ is the digamma function. Next we will take the partial derivative with respect to $\beta$ and set it to zero:
\begin{align}
\dfrac{\partial \ln{L(\Omega_0)}}{\partial \beta}\Bigm \lvert_{\alpha=\widehat{\alpha}, \beta=\widehat{\beta}} &= -n\left(\dfrac{\Gamma(\wal)\wbe^{\wal-1}\wal\expy - \Gamma(\wal)\wbe^{\wal}\expy \dfrac{\overline{Y}}{\wbe^2}}{\Gamma(\wal)\wbe^{\wal}\expy}\right) = 0 \nonumber\\
\therefore \hspace{0.2cm} 0 &= -n\left(\dfrac{\wal}{\wbe}-\dfrac{\ovY}{\wbe^2}\right). \label{MLENullBeta}
\end{align}
Multiplying both sides of \eqn{MLENullBeta} by $-\dfrac{\wbe^2}{n}$ yields:
\begin{align}
0 &= \wal\wbe - \ovY \nonumber \\
\therefore \hspace{0.2cm} \wbe &= \dfrac{\ovY}{\wal}. \label{MLENullBeta2}
\end{align}
Re-writing \eqn{MLENullAlpha} using \eqn{MLENullBeta2} yields:
\begin{align}
0 &= -n\left(\psi^{(0)}(\wal)+\ln{\dfrac{\ovY}{\wal}}\right) + \sum_{i=1}^{m} \sum_{j=1}^{n_i} \ln{Y_{ij}}.\label{MLENullAlpha2}
\end{align}
This equation cannot be analytically solved, so $\wal$ must be numerically approximated using Newton's method and $\wbe$ must be estimated from our approximation of $\wal$ using \eqn{MLENullBeta2}.
Before we apply Newton's method to get an algorithm for estimating $\wal$, let us use our MLEs to find our expression for maximum likelihood under the null. Substituting \eqn{MLENullBeta2} into \eqn{LikNull} yields:
\begin{align}
L(\widehat{\Omega_0}) &= \left(\Gamma(\wal)\left(\dfrac{\ovY}{\wal}\right)^{\wal}\exp(\wal)\right)^{-n} \left(\prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}\right)^{\wal-1} \nonumber\\
&= \left(\Gamma(\wal)\left(\dfrac{\ovY e}{\wal}\right)^{\wal}\right)^{-n} \prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}^{\wal-1}. \label{MLNull}
\end{align}
\subsection{Using Newton's method to obtain $\wal$}
To use Newton's method, we must find the Jacobian for our problem, which should in this case be a scalar as we have only one equation to solve (\eqn{MLENullAlpha2}). Labelling the right-hand side of \eqn{MLENullAlpha2} as $f(\wal)$, and differentiating it with respect to $\wal$ yields:
\begin{align*}
\dfrac{\partial f}{\partial \wal} &= -n\left(\psi^{(1)}(\wal) - \dfrac{1}{\wal}\right) \\
&= n\left(\dfrac{1}{\wal} - \psi^{(1)}(\wal)\right).
\end{align*}
Therefore we can refine our estimate of $\wal$ from an initial guess $\wal^{(0)}$ using:
\begin{align*}
\wal^{(k+1)} &= \wal^{(k)} - \dfrac{f(\wal^{(k)})}{\dfrac{\partial f}{\partial \wal}\Bigm\lvert_{\wal=\wal^{(k)}}} \\
&= \wal^{(k)} - \dfrac{-n\left(\psi^{(0)}(\wal^{(k)})+\ln{\dfrac{\ovY}{\wal^{(k)}}}\right) + \sum_{i=1}^{m} \sum_{j=1}^{n_i} \ln{Y_{ij}}}{n\left(\dfrac{1}{\wal^{(k)}} - \psi^{(1)}(\wal^{(k)})\right)}.
\end{align*}
Where $\psi^{(1)}(\wal^{(k)})$ is the derivative of the digamma function, also known as the trigamma function.
\section{Derivation of the unrestricted maximum likelihood}
\begin{align}
L(\Omega) &= \prod_{i=1}^m \prod_{j=1}^{n_i} \dfrac{1}{\Gamma(\alpha_i)\beta_i^{\alpha_i}} Y_{ij}^{\alpha_i-1} \exp{\left(-\dfrac{Y_{ij}}{\beta_i}\right)} \nonumber \\
&= \left(\prod_{i=1}^m\left(\Gamma(\alpha_i)\beta_i^{\alpha_i}\right)^{-n_i}\right) \left(\prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}^{\alpha_i-1}\right) \exp\left(-\sum_{i=1}^m \dfrac{n_i\ovY_i}{\beta_i}\right). \label{LikUnr}
\end{align}
Taking the natural logarithm yields:
\begin{align*}
\ln{L(\Omega)} &= -\sum_{i=1}^m n_i\ln{\left(\Gamma(\alpha_i)\beta_i^{\alpha_i}\right)} + \sum_{i=1}^m (\alpha_i-1)\sum_{j=1}^{n_i}\ln{Y_{ij}} - \sum_{i=1}^m \dfrac{n_i\ovY_i}{\beta_i}.
\end{align*}
Differentiating our log-likelihood with respect to $\alpha_k$ and setting the derivative to zero:
\begin{align}
\dfrac{\partial \ln{L(\Omega)}}{\partial \alpha_k} \Bigm \lvert_{\alpha_i=\wal_i, \beta_i=\wbe_i} &= -\sum_{i=1}^m n_i \left(\dfrac{\Gamma'(\wal_i)\wbe_i^{\wal_i} + \Gamma(\wal_i)(\ln{\wbe_i})\wbe_i^{\wal_i}}{\Gamma(\wal_i)\wbe_i^{\wal_i}}\right)\delta_{ik} + \sum_{i=1}^m \delta_{ik} \sum_{j=1}^{n_i} \ln{Y_{ij}} =0 \nonumber\\
\therefore \hspace{0.2cm} 0 &= -n_k(\psi^{(0)}(\wal_k)+\ln{\wbe_k}) + \sum_{j=1}^{n_k}\ln{Y_{kj}}. \label{MLEUnrAlpha}
\end{align}
Where $\delta_{ik}$ is the Kronecker delta. Differentiating our log-likelihood with respect to $\beta_k$ and setting the derivative to zero:
\begin{align}
\dfrac{\partial \ln{L(\Omega)}}{\partial \beta_k} \Bigm \lvert_{\alpha_i=\wal_i, \beta_i=\wbe_i} &= -\sum_{i=1}^m n_i \left(\dfrac{\Gamma(\wal_i)\wbe_i^{\wal_i-1}\wal_i}{\Gamma(\wal_i)\wbe_i^{\wal_i}}\right)\delta_{ik} + \sum_{i=1}^m \dfrac{n_i \ovY_i}{\wbe_i^2}\delta_{ik} = 0 \nonumber\\
\therefore \hspace{0.2cm} 0 &= -\dfrac{n_k \wal_k}{\wbe_k} + \dfrac{n_k\ovY_k}{\wbe_k^2}. \label{MLEUnrBeta}
\end{align}
Multiplying \eqn{MLEUnrBeta} by $\dfrac{\wbe_k^2}{n_k}$ yields:
\begin{align}
-\wal_k \wbe_k + \ovY_k &= 0 \nonumber\\
\wbe_k &= \dfrac{\ovY_k}{\wal_k}. \label{MLEUnrBeta2}
\end{align}
Substituting \eqn{MLEUnrBeta2} into \eqn{MLEUnrAlpha} yields:
\begin{align}
0 &= -n_k \left(\psi^{(0)}(\wal_k) + \ln{\left(\dfrac{\ovY_k}{\wal_k}\right)}\right) + \sum_{j=1}^{n_k} \ln{Y_{kj}}.\label{MLEUnrAlpha2}
\end{align}
\eqn{MLEUnrAlpha2} has no closed-form solution and hence $\wal_k$ must be numerically approximated using a technique like Newton's method. Before we obtain an iterative formula based on Newton's method to approximate $\wal_k$, we will use \eqn{MLEUnrBeta2} to obtain the unrestricted maximum likelihood by substituting it into \eqn{LikUnr}:
\begin{align}
L(\widehat{\Omega}) &= \left(\prod_{i=1}^m\left(\Gamma(\wal_i)\left(\dfrac{\ovY_i}{\wal_i}\right)^{\wal_i}\right)^{-n_i}\right) \left(\prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}^{\wal_i-1}\right) \exp\left(-\sum_{i=1}^m \dfrac{n_i\ovY_i}{\dfrac{\ovY_i}{\wal_i}}\right) \nonumber\\
&= \left(\prod_{i=1}^m\left(\Gamma(\wal_i)\left(\dfrac{\ovY_i}{\wal_i}\right)^{\wal_i}\right)^{-n_i}\right) \left(\prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}^{\wal_i-1}\right) \exp\left(-\sum_{i=1}^m n_i\wal_i\right) \nonumber\\
&= \left(\prod_{i=1}^m\left(\Gamma(\wal_i)\left(\dfrac{\ovY_i e}{\wal_i}\right)^{\wal_i}\right)^{-n_i}\right) \prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}^{\wal_i-1}. \label{MLUnr}
\end{align}
\subsection{Using Newton's method to obtain $\wal_k$}
Calling the right-hand side of \eqn{MLEUnrAlpha2}, $g_k(\{\wal_j\})$, and taking its partial derivative with respect to $\wal_i$ so as to create the Jacobian matrix:
\begin{align*}
\dfrac{\partial g_k(\{\wal_j\})}{\partial \wal_i} &= -n_k \left(\psi^{(1)}(\wal_k) - \dfrac{1}{\wal_k}\right)\delta_{ik} \\
&= n_k \delta_{ik} \left(\dfrac{1}{\wal_k} - \psi^{(1)}(\wal_k)\right).
\end{align*}
Which means our Jacobian $\mathrm{J}=\left(\dfrac{\partial g_k(\{\wal_j\})}{\partial \wal_i}\right)$ will be a diagonal matrix. Hence $\mathrm{J}^{-1} = \left(\left(\dfrac{\partial g_k(\{\wal_j\})}{\partial \wal_i}\right)^{-1}\right)$. If we let $\boldsymbol{\wal} = (\wal_i)$ and $\mathbf{F} = (g_k(\{\wal_j\}))$, then:
\begin{align*}
\boldsymbol{\wal}^{(l+1)} &= \boldsymbol{\wal}^{(l)} - \mathrm{J}^{-1}\mathbf{F}.
\end{align*}
\section{Likelihood ratio}
Therefore the likelihood ratio is:
\begin{align*}
\lambda &= \dfrac{L(\widehat{\Omega_0})}{L(\widehat{\Omega})} \\
&= \dfrac{\left(\Gamma(\wal)\left(\dfrac{\ovY e}{\wal}\right)^{\wal}\right)^{-n} \prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}^{\wal-1}}{\left(\prod_{i=1}^m\left(\Gamma(\wal_i)\left(\dfrac{\ovY_i e}{\wal_i}\right)^{\wal_i}\right)^{-n_i}\right) \prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}^{\wal_i-1}} \\
&= \left(\Gamma(\wal)\left(\dfrac{\ovY }{\wal}\right)^{\wal}\right)^{-n} \left(\prod_{i=1}^m\left(\Gamma(\wal_i)\left(\dfrac{\ovY_i }{\wal_i}\right)^{\wal_i}\right)^{n_i}\right)\prod_{i=1}^m \prod_{j=1}^{n_i} Y_{ij}^{\wal-\wal_i}
\end{align*}
And we know that asymptotically under the null hypothesis $-2\ln{\lambda} \sim \chi^2_{2m-2}$, so we will test $-2\ln{\lambda}$ against the $\chi^2_{2m-2}$ distribution to find our p-value.
\end{document}