-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobotstate.cpp
117 lines (91 loc) · 2.58 KB
/
robotstate.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/*
* robotstate.cpp
*
* Created on: 13 janv. 2011
* Author: HoHen
*/
#include "robotstate.h"
#include "parameters.h"
#include "math.h"
#include "encoder.h"
int value_pwm_left;
int value_pwm_right;
RobotState robot_state;
double a0=0.0;
void initRobotState(){
robot_state.x = 0;
robot_state.y = 0;
robot_state.speed = 0;
robot_state.a = 0;
}
void robot_set_x(long int x) {
robot_state.x = x;
}
void robot_set_mm_x(long int x) {
robot_set_ticks_x(x*ENC_MM_TO_TICKS);
}
void robot_set_ticks_x(long int x) {
robot_state.x = x*100;
}
void robot_set_y(long int y) {
robot_state.y = y;
}
void robot_set_mm_y(long int y) {
robot_set_ticks_y(y*ENC_MM_TO_TICKS);
}
void robot_set_ticks_y(long int y) {
robot_state.y = y*100;
}
void robot_set_rad_angle(double a) {
a0 = a-(double)(value_right_enc-value_left_enc)/(double)ENC_CENTER_DIST_TICKS;
robot_state.a = a;
}
void robot_set_deg_angle(double a) {
a0 = a*M_PI/180.0-(double)(value_right_enc-value_left_enc)/(double)ENC_CENTER_DIST_TICKS;
}
double robot_get_angle() {
return robot_state.a;
}
long int robot_get_x() {
return robot_state.x;
}
long int robot_get_y() {
return robot_state.y;
}
/* Implementation du modele d'evolution du robot a partir de l'odometrie
* A appeler a intervalle regulier (a voir pour la mettre sur une interruption timer)
* */
void computeRobotState(){
static long int prev_value_left_enc = 0;
static long int prev_value_right_enc = 0;
/*calcul du deplacement depuis la derniere fois en ticks */
long int dl = value_left_enc - prev_value_left_enc;
long int dr = value_right_enc - prev_value_right_enc;
/*preparation de la prochaine iteration*/
prev_value_left_enc = value_left_enc;
prev_value_right_enc = value_right_enc;
/* calcul du deplacement */
long int delta_dist = (dr+dl)*50;
/*mise a jour de l'etat du robot */
//robot_state.speed = 0;
robot_state.a = moduloPI(a0+(double)(value_right_enc-value_left_enc)/(double)ENC_CENTER_DIST_TICKS);
robot_set_x(robot_state.x + (double)delta_dist*cos(robot_state.a));
robot_set_y(robot_state.y + (double)delta_dist*sin(robot_state.a));
}
/* Fonction de calcul du modulo PI ]-PI,PI]
* moduloPi( 3*PI/2 )= - PI/2
* moduloPi( PI ) = PI
* moduloPi( 0 ) = 0
*
* x-y*((int)(x/y)) => c'est le modulo pour des doubles (x%y)
* trunc et int c'est pareil au final, j'ai choisi trunc juste pour que ce soit plus complique !
* */
double moduloPI(double Nb){
double result;
if (Nb > M_PI)
result = Nb - (2*M_PI)*trunc((Nb + M_PI) / (2*M_PI));
else if (Nb <= -M_PI)
result = Nb - (2*M_PI)*trunc((Nb - M_PI) / (2*M_PI));
else result = Nb;
return(result);
}