You are given a positive integer n
, that is initially placed on a board. Every day, for 109
days, you perform the following procedure:
- For each number
x
present on the board, find all numbers1 <= i <= n
such thatx % i == 1
. - Then, place those numbers on the board.
Return the number of distinct integers present on the board after 109
days have elapsed.
Note:
- Once a number is placed on the board, it will remain on it until the end.
%
stands for the modulo operation. For example,14 % 3
is2
.
Input: n = 5 Output: 4 Explanation: Initially, 5 is present on the board. The next day, 2 and 4 will be added since 5 % 2 == 1 and 5 % 4 == 1. After that day, 3 will be added to the board because 4 % 3 == 1. At the end of a billion days, the distinct numbers on the board will be 2, 3, 4, and 5.
Input: n = 3 Output: 2 Explanation: Since 3 % 2 == 1, 2 will be added to the board. After a billion days, the only two distinct numbers on the board are 2 and 3.
1 <= n <= 100
impl Solution {
pub fn distinct_integers(n: i32) -> i32 {
1.max(n - 1)
}
}