You are given an integer array nums
and an integer threshold
.
Find any subarray of nums
of length k
such that every element in the subarray is greater than threshold / k
.
Return the size of any such subarray. If there is no such subarray, return -1
.
A subarray is a contiguous non-empty sequence of elements within an array.
Input: nums = [1,3,4,3,1], threshold = 6 Output: 3 Explanation: The subarray [3,4,3] has a size of 3, and every element is greater than 6 / 3 = 2. Note that this is the only valid subarray.
Input: nums = [6,5,6,5,8], threshold = 7 Output: 1 Explanation: The subarray [8] has a size of 1, and 8 > 7 / 1 = 7. So 1 is returned. Note that the subarray [6,5] has a size of 2, and every element is greater than 7 / 2 = 3.5. Similarly, the subarrays [6,5,6], [6,5,6,5], [6,5,6,5,8] also satisfy the given conditions. Therefore, 2, 3, 4, or 5 may also be returned.
1 <= nums.length <= 105
1 <= nums[i], threshold <= 109
impl Solution {
pub fn valid_subarray_size(nums: Vec<i32>, threshold: i32) -> i32 {
let mut sublens = vec![0; nums.len()];
let mut asc_stack = vec![];
for i in 0..nums.len() {
while asc_stack.last().unwrap_or(&(-1, 0)).1 >= nums[i] {
asc_stack.pop();
}
sublens[i] = i as i32 - asc_stack.last().unwrap_or(&(-1, 0)).0;
asc_stack.push((i as i32, nums[i]));
}
asc_stack.clear();
for i in (0..nums.len()).rev() {
while asc_stack.last().unwrap_or(&(nums.len() as i32, 0)).1 >= nums[i] {
asc_stack.pop();
}
sublens[i] += asc_stack.last().unwrap_or(&(nums.len() as i32, 0)).0 - i as i32 - 1;
asc_stack.push((i as i32, nums[i]));
if nums[i] > threshold / sublens[i] {
return sublens[i];
}
}
-1
}
}