You are given an integer n
, the number of teams in a tournament that has strange rules:
- If the current number of teams is even, each team gets paired with another team. A total of
n / 2
matches are played, andn / 2
teams advance to the next round. - If the current number of teams is odd, one team randomly advances in the tournament, and the rest gets paired. A total of
(n - 1) / 2
matches are played, and(n - 1) / 2 + 1
teams advance to the next round.
Return the number of matches played in the tournament until a winner is decided.
Input: n = 7 Output: 6 Explanation: Details of the tournament: - 1st Round: Teams = 7, Matches = 3, and 4 teams advance. - 2nd Round: Teams = 4, Matches = 2, and 2 teams advance. - 3rd Round: Teams = 2, Matches = 1, and 1 team is declared the winner. Total number of matches = 3 + 2 + 1 = 6.
Input: n = 14 Output: 13 Explanation: Details of the tournament: - 1st Round: Teams = 14, Matches = 7, and 7 teams advance. - 2nd Round: Teams = 7, Matches = 3, and 4 teams advance. - 3rd Round: Teams = 4, Matches = 2, and 2 teams advance. - 4th Round: Teams = 2, Matches = 1, and 1 team is declared the winner. Total number of matches = 7 + 3 + 2 + 1 = 13.
1 <= n <= 200
# @param {Integer} n
# @return {Integer}
def number_of_matches(n)
if n == 1
0
elsif n.even?
n / 2 + number_of_matches(n / 2)
else
(n - 1) / 2 + number_of_matches((n - 1) / 2 + 1)
end
end
impl Solution {
pub fn number_of_matches(n: i32) -> i32 {
if n == 1 {
0
} else if n % 2 == 0 {
n / 2 + Self::number_of_matches(n / 2)
} else {
(n - 1) / 2 + Self::number_of_matches((n - 1) / 2 + 1)
}
}
}