Given a binary tree root
and an integer target
, delete all the leaf nodes with value target
.
Note that once you delete a leaf node with value target
, if it's parent node becomes a leaf node and has the value target
, it should also be deleted (you need to continue doing that until you can't).
Input: root = [1,2,3,2,null,2,4], target = 2 Output: [1,null,3,null,4] Explanation: Leaf nodes in green with value (target = 2) are removed (Picture in left). After removing, new nodes become leaf nodes with value (target = 2) (Picture in center).
Input: root = [1,3,3,3,2], target = 3 Output: [1,3,null,null,2]
Input: root = [1,2,null,2,null,2], target = 2 Output: [1] Explanation: Leaf nodes in green with value (target = 2) are removed at each step.
Input: root = [1,1,1], target = 1 Output: []
Input: root = [1,2,3], target = 1 Output: [1,2,3]
1 <= target <= 1000
- Each tree has at most
3000
nodes. - Each node's value is between
[1, 1000]
.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def removeLeafNodes(self, root: TreeNode, target: int) -> TreeNode:
if not root:
return None
root.left = self.removeLeafNodes(root.left, target)
root.right = self.removeLeafNodes(root.right, target)
if not root.left and not root.right and root.val == target:
return None
return root