-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_loop.py
149 lines (114 loc) · 5.08 KB
/
train_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import math
import random
import time
from datetime import datetime
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import net
from deformations import elastically_deform_image_2d
import progress
# Remove tf annoying logging
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def augment(image, label, size):
"Augments image and returns the augmented tensor"
if random.random() > 0.2:
# Augment with elastic deformations
image = elastically_deform_image_2d(image[:,:,0], 2, 32)
# Go back to initial image shape
image = image.reshape(image.shape + (1,))
# Assume image is square
max_displacement = image.shape[0] - size
displacement_x = int(random.random() * max_displacement)
displacement_y = int(random.random() * max_displacement)
image = image[
displacement_y:displacement_y+size,
displacement_x:displacement_x+size
]
return image, label
def train_net(training, test, size=512, epochs=400, batch_size=4, logging_interval=5, run_name=None):
"""Train network using the given training and test data.
"""
if run_name is None:
run_name = datetime.now().strftime(r'%Y-%m-%d_%H:%M')
training_images, training_labels = training
test_images, test_labels = test
# Crop center from test images
border = (test_images.shape[1] - size) // 2
test_images = test_images[:,border:border+size, border:border+size]
print()
epoch_size = int(math.ceil(training_images.shape[0] / batch_size))
# Use tensorflow Dataset API to improve the performances of the training set
# Shuffle, augment and created batches for each epoch
training_set = (
tf.data.Dataset.from_tensor_slices((training_images, training_labels))
# .shuffle(buffer_size=training_images.shape[0])
.apply(tf.data.experimental.shuffle_and_repeat(buffer_size=training_images.shape[0]))
.map(lambda im, lab: tf.py_func(augment, [im, lab, size], [im.dtype, lab.dtype]), num_parallel_calls=4)
.batch(batch_size)
.prefetch(1)
)
next_training = training_set.make_one_shot_iterator().get_next()
# Create network
inp_var, labels_var, output = net.generate_network(size)
error_fn, train_fn, metrics = net.generate_functions(inp_var, labels_var, output)
print('Parameter number: {}'.format( np.sum([np.prod(v.shape) for v in tf.trainable_variables()]) ))
# Create tensorboard summaries
metrics_summary = progress.create_metrics_summary(metrics)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# Initialize weights
sess.run(tf.global_variables_initializer())
# Initialite tensorboard
progress.init_run(run_name)
# Training loop
for e in range(epochs):
start = time.time()
# Initialize accuracy calculation
sess.run(tf.local_variables_initializer())
# Get needed functions
accuracy_fn, accuracy_update = metrics['accuracy']
auc_fn, auc_update = metrics['AUC']
for b in range(epoch_size):
batch_imgs, batch_labs = sess.run(next_training)
# Train
sess.run([train_fn, accuracy_update, auc_update], {
'input:0': batch_imgs,
'labels:0': batch_labs,
})
# Provide some feedback
print('Batch {} / {}'.format(b + 1, epoch_size), end='\r')
# Compute metrics
accuracy = sess.run(accuracy_fn)
auc = sess.run(auc_fn)
if True:
# Every logging_interval epochs compute and save results on the test set
# Reset accuracy and auc for the test set
sess.run(tf.local_variables_initializer())
# Accuracy on test
for ti, (img, lab) in enumerate(zip(test_images, test_labels)):
sess.run([accuracy_update, auc_update], {
'input:0': img.reshape(1, size, size, -1),
'labels:0': [lab],
})
print('Test image {} / {}'.format(ti + 1, len(test_images)), end='\r')
# Compute test metrics
test_accuracy = sess.run(accuracy_fn)
test_auc = sess.run(auc_fn)
# Collect summaries for tensorboard
summ_data = sess.run(metrics_summary, {
'training_accuracy:0': accuracy,
'training_AUC:0': auc,
'test_accuracy:0': test_accuracy,
'test_AUC:0': test_auc,
})
# Write summaries to disk
progress.add_summary(summ_data, e)
elapsed = time.time() - start
# Print progress
print(
'Epoch {:>3} | Time: {:>3.0f} s | Acc: {:>5.3f} (Test: {:>5.3f}) | AUC: {:>5.3f} (Test: {:>5.3f})'
.format(e, elapsed, accuracy, test_accuracy, auc, test_auc)
)