-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdeformations.py
41 lines (33 loc) · 1.92 KB
/
deformations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import SimpleITK as sitk
def elastically_deform_image_2d(image, num_control_points, std_dev, interpolator='linear'):
"""Implements elastic deformations that are used for augmentation, using the pre-made SimpleITK library.
The number of control points is (size of the grid - 2) due to borders, whilte std_dev is the standard
deviation of the displacement vectors in pixels. Interpolator is either 'linear' or 'cubic'"""
# Convert numpy array to itk object
sitk_image = sitk.GetImageFromArray(image, isVector=False)
# Allocate memory for transform parameters
transform_mesh_size = [num_control_points] * sitk_image.GetDimension()
transform = sitk.BSplineTransformInitializer(
sitk_image ,
transform_mesh_size
)
# Read the parameters as a numpy array, then add random
# displacement and set the parameters back into the transform
params = np.asarray(transform.GetParameters(), dtype=np.float64)
params = params + np.random.randn(params.shape[0]) * std_dev
transform.SetParameters(tuple(params))
# Create resampler object
# The interpolator can be set to sitk.sitkBSpline for cubic interpolation,
# see https://itk.org/SimpleITKDoxygen/html/namespaceitk_1_1simple.html#a7cb1ef8bd02c669c02ea2f9f5aa374e5 for more options
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(sitk_image)
resampler.SetInterpolator(sitk.sitkLinear if interpolator == 'linear' else sitk.sitkBSpline)
resampler.SetDefaultPixelValue(float(image.min())) # Fill with minimu value if out of image, float bcause otherwise tf thinks it's a double
resampler.SetTransform(transform)
# Execute augmentation
sitk_augmented_image = resampler.Execute(sitk_image)
# Convert back to numpy
augmented_image = sitk.GetArrayFromImage(sitk_augmented_image)
augmented_image = augmented_image.astype(dtype=np.float32)
return augmented_image