-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdiffusion.py
360 lines (259 loc) · 9.4 KB
/
diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
r"""Diffusion helpers"""
import inox
import inox.nn as nn
import jax
import jax.numpy as jnp
import numpy as np
from jax import Array
from typing import *
# isort: split
from .linalg import DPLR, transpose
class VESDE(nn.Module):
r"""Variance exploding (VE) SDE.
.. math:: x_t = x + \sigma_t z
with
.. math:: \sigma_t = \exp(\log(a) (1 - t) + \log(b) t)
Arguments:
a: The noise lower bound.
b: The noise upper bound.
"""
def __init__(self, a: Array = 1e-3, b: Array = 1e2):
self.a = jnp.log(a)
self.b = jnp.log(b)
@inox.jit
def __call__(self, x: Array, z: Array, t: Array) -> Array:
sigma_t = self.sigma(t)
sigma_t = sigma_t[..., None]
return x + sigma_t * z
@inox.jit
def sigma(self, t: Array) -> Array:
return jnp.exp(self.a + (self.b - self.a) * t)
class DDPM(nn.Module):
r"""DDPM sampler for the reverse SDE.
.. math:: x_s = x_t - \tau (x_t - f(x_t)) + \sigma_s \sqrt{\tau} \epsilon
where :math:`\tau = 1 - \frac{\sigma_s^2}{\sigma_t^2}`.
Arguments:
model: A denoiser model :math:`f(x_t) \approx E[x | x_t]`.
sde: The forward SDE.
"""
def __init__(self, model: nn.Module, sde: VESDE = None):
super().__init__()
self.model = model
if sde is None:
self.sde = VESDE()
else:
self.sde = sde
@inox.jit
def __call__(self, xt: Array, t: Array = 1.0, steps: int = 64, key: Array = None) -> Array:
dt = jnp.asarray(t / steps)
time = jnp.linspace(t, dt, steps)
keys = jax.random.split(key, steps)
def f(xt, t_key):
t, key = t_key
return self.step(xt, t, t - dt, key), None
x0, _ = jax.lax.scan(f, xt, (time, keys))
return self.model(x0, self.sde.sigma(0.0))
@inox.jit
def step(self, xt: Array, t: Array, s: Array, key: Array) -> Array:
sigma_s, sigma_t = self.sde.sigma(s), self.sde.sigma(t)
tau = 1 - (sigma_s / sigma_t) ** 2
eps = jax.random.normal(key, xt.shape)
return xt - tau * (xt - self.model(xt, sigma_t)) + sigma_s * jnp.sqrt(tau) * eps
class DDIM(DDPM):
r"""DDIM sampler for the reverse SDE.
.. math:: x_s = x_t - (1 - \frac{\sigma_s}{\sigma_t}) (x_t - f(x_t))
Arguments:
model: A denoiser model :math:`f(x_t) \approx E[x | x_t]`.
sde: The forward SDE.
"""
@inox.jit
def step(self, xt: Array, t: Array, s: Array, key: Array = None) -> Array:
sigma_s, sigma_t = self.sde.sigma(s), self.sde.sigma(t)
return xt - (1 - sigma_s / sigma_t) * (xt - self.model(xt, sigma_t))
class PredictorCorrector(DDPM):
r"""Predictor-Corrector sampler for the reverse SDE.
Arguments:
model: A denoiser model :math:`f(x_t) \approx E[x | x(t)]`.
corrections: The number of Langevin Monte Carlo (LMC) corrections.
tau: The LMC step size.
"""
def __init__(self, model: nn.Module, corrections: int = 1, tau: Array = 1e-1, **kwargs):
super().__init__(model, **kwargs)
self.corrections = corrections
self.tau = jnp.asarray(tau)
@inox.jit
def step(self, xt: Array, t: Array, s: Array, key: Array) -> Array:
xs = self.predict(xt, t, s)
for key in jax.random.split(key, self.corrections):
xs = self.correct(xs, s, key)
return xs
@inox.jit
def predict(self, xt: Array, t: Array, s: Array) -> Array:
sigma_s, sigma_t = self.sde.sigma(s), self.sde.sigma(t)
return xt - (1 - sigma_s / sigma_t) * (xt - self.model(xt, sigma_t))
@inox.jit
def correct(self, xt: Array, t: Array, key: Array) -> Array:
sigma_t = self.sde.sigma(t)
eps = jax.random.normal(key, xt.shape)
return xt - self.tau * (xt - self.model(xt, sigma_t)) + sigma_t * jnp.sqrt(2 * self.tau) * eps
class PosEmbedding(nn.Module):
r"""Creates a positional embedding module.
References:
| Attention Is All You Need (Vaswani et al., 2017)
| https://arxiv.org/abs/1706.03762
Arguments:
features: The number of embedding features.
"""
def __init__(self, features: int):
freqs = np.linspace(0, 1, features // 2)
freqs = (1 / 1e4) ** freqs
self.freqs = jnp.asarray(freqs)
@inox.jit
def __call__(self, x: Array) -> Array:
x = x[..., None]
return jnp.concatenate(
(
jnp.sin(self.freqs * x),
jnp.cos(self.freqs * x),
),
axis=-1,
)
class Denoiser(nn.Module):
r"""Denoiser model with EDM-style preconditioning.
.. math:: f(x_t) \approx E[x | x_t]
References:
| Elucidating the Design Space of Diffusion-Based Generative Models (Karras et al., 2022)
| https://arxiv.org/abs/2206.00364
Arguments:
network: A noise conditional network.
"""
def __init__(self, network: nn.Module, emb_features: int = 64):
self.net = network
self.emb = PosEmbedding(emb_features)
@inox.jit
def __call__(self, xt: Array, sigma_t: Array, key: Array = None) -> Array:
r"""
Arguments:
xt: The noisy tensor, with shape :math:`(*, D)`.
sigma_t: The noise std, with shape :math:`(*)`.
key: A PRNG key.
"""
c_skip = 1 / (sigma_t**2 + 1)
c_out = sigma_t / jnp.sqrt(sigma_t**2 + 1)
c_in = 1 / jnp.sqrt(sigma_t**2 + 1)
c_noise = jnp.log(sigma_t)
c_skip, c_out, c_in = c_skip[..., None], c_out[..., None], c_in[..., None]
return c_skip * xt + c_out * self.net(c_in * xt, self.emb(c_noise), key)
class DenoiserLoss(nn.Module):
r"""Loss for a denoiser model.
.. math:: \lambda_t || A f(x_t) - y ||^2
Arguments:
sde: The forward SDE.
"""
def __init__(self, sde: VESDE = None):
if sde is None:
self.sde = VESDE()
else:
self.sde = sde
@inox.jit
def __call__(
self,
model: nn.Module,
x: Array,
z: Array,
t: Array,
A: Callable[[Array], Array] = None, # /!\ linear
y: Array = None,
key: Array = None,
) -> Array:
sigma_t = self.sde.sigma(t)
lmbda_t = 1 / sigma_t**2 + 1
xt = self.sde(x, z, t)
ft = model(xt, sigma_t, key)
if A is None:
A = lambda x: x
if y is None:
y = A(x)
error = A(ft) - y
return jnp.mean(lmbda_t * jnp.mean(error**2, axis=-1))
class GaussianDenoiser(nn.Module):
r"""Denoiser model for a Gaussian random variable.
.. math:: p(x) = N(x | \mu_x, \Sigma_x)
Arguments:
mu_x: The mean :math:`\mu_x`.
cov_x: The covariance :math:`\Sigma_x`.
"""
def __init__(
self,
mu_x: Array = 0.0,
cov_x: Union[Array, DPLR] = 1.0,
):
if not isinstance(cov_x, DPLR):
cov_x = DPLR(cov_x)
self.mu_x = jnp.asarray(mu_x)
self.cov_x = jax.tree_util.tree_map(jnp.asarray, cov_x)
@inox.jit
def __call__(self, xt: Array, sigma_t: Array, key: Array = None) -> Array:
cov_t = sigma_t[..., None] ** 2
return xt - cov_t * (self.cov_x + cov_t).solve(xt - self.mu_x)
class PosteriorDenoiser(nn.Module):
r"""Posterior denoiser model for a Gaussian observation.
.. math:: p(y | x) = N(y | Ax, \Sigma_y)
Arguments:
model: A denoiser model :math:`f(x_t) \approx E[x | x_t]`.
A: The forward model :math:`A`.
y: An observation.
cov_y: The observation covariance :math:`\Sigma_y`.
cov_x: The hidden covariance :math:`\Sigma_x`.
"""
def __init__(
self,
model: nn.Module,
A: Callable[[Array], Array],
y: Array,
cov_y: Union[Array, DPLR],
cov_x: Union[Array, DPLR] = None,
rtol: float = 1e-3,
maxiter: int = 1,
method: str = 'cg',
verbose: bool = False,
):
super().__init__()
self.model = model
self.A = A
self.y = jnp.asarray(y)
if not isinstance(cov_y, DPLR):
cov_y = DPLR(cov_y)
if not isinstance(cov_x, DPLR) and cov_x is not None:
cov_x = DPLR(cov_x)
self.cov_y = jax.tree_util.tree_map(jnp.asarray, cov_y)
self.cov_x = jax.tree_util.tree_map(jnp.asarray, cov_x)
self.rtol = rtol
self.maxiter = maxiter
if method == 'cg':
self.solve = jax.scipy.sparse.linalg.cg
elif method == 'bicgstab':
self.solve = jax.scipy.sparse.linalg.bicgstab
self.verbose = verbose
@inox.jit
def __call__(self, xt: Array, sigma_t: Array, key: Array = None) -> Array:
cov_t = sigma_t[..., None] ** 2
x, vjp = jax.vjp(lambda xt: self.model(xt, sigma_t, key), xt)
y, A = jax.linearize(self.A, x)
At = transpose(A, x)
if self.cov_x is None:
cov_y_xt = lambda v: self.cov_y @ v + cov_t * A(*vjp(At(v)))
else:
cov_x_xt = cov_t + (-(cov_t**2)) * (self.cov_x + cov_t).inv
cov_y_xt = lambda v: self.cov_y @ v + A(cov_x_xt @ At(v))
b = self.y - y
v, _ = self.solve(
A=cov_y_xt,
b=b,
tol=self.rtol,
maxiter=self.maxiter,
)
if self.verbose:
jax.debug.print('{},{}', sigma_t, jnp.linalg.norm(cov_y_xt(v) - b))
(score,) = vjp(At(v))
return x + cov_t * score