From 8b60e48b7d1153275f1f298dbea5a92232dca710 Mon Sep 17 00:00:00 2001 From: Kunhong Du <43747297+KunhongDu@users.noreply.github.com> Date: Wed, 14 Aug 2024 15:06:20 +0200 Subject: [PATCH] Prove prop 6.13 [Folland] (#51) Proved prop 6.13 [Folland], finite case and infinite case. Also shortened some long lines. --- BonnAnalysis/ComplexInterpolation.lean | 383 ++++++++++++++++++------ blueprint/src/chapter/interpolation.tex | 62 +++- 2 files changed, 349 insertions(+), 96 deletions(-) diff --git a/BonnAnalysis/ComplexInterpolation.lean b/BonnAnalysis/ComplexInterpolation.lean index 32c74e4..00c88fb 100644 --- a/BonnAnalysis/ComplexInterpolation.lean +++ b/BonnAnalysis/ComplexInterpolation.lean @@ -945,45 +945,43 @@ theorem DiffContOnCl.norm_le_pow_mul_pow {a b : ℝ} {f : ℂ → ℂ} (hab: a rwa [← snorm_congr_ae hf.ae_eq_mk] + _ = sSup {snorm (f * (g.1 : α → ℂ)) 1 μ | g : Lp.simpleLe1 ℂ q μ} := by + congr; ext + have (g : Lp.simpleLe1 ℂ q μ) : snorm (f * (g.1 : α → ℂ)) 1 μ + = snorm (hf.mk * (g.1 : α → ℂ)) 1 μ := + snorm_congr_ae <| Filter.EventuallyEq.mul hf.ae_eq_mk (EventuallyEq.refl _ _) + simp [this] + + +open Set in +lemma snormEssSup_eq_sSup_snorm [SigmaFinite μ] (f : α → ℂ) (hf : Measurable f) +(hf' : sSup {x |∃ g : SimpleFunc α ℂ, snorm g 1 μ ≤ 1 ∧ +x = snorm (f * (g : α → ℂ)) 1 μ} < ⊤): +snormEssSup f μ = sSup {x |∃ g : SimpleFunc α ℂ, snorm g 1 μ ≤ 1 +∧ x = snorm (f * (g : α → ℂ)) 1 μ} := by + apply le_antisymm ?_ + . apply sSup_le + intro s ⟨g, hg₁, hg₂⟩ + rw [hg₂, mul_comm] + simp [snorm, snorm'] + apply le_trans (lintegral_norm_mul_le_one_top _ (by measurability)) + apply mul_le_of_le_one_of_le hg₁ (by simp [snorm]) + . set M := sSup {x |∃ g : SimpleFunc α ℂ, snorm g 1 μ ≤ 1 ∧ + x = snorm (f * (g : α → ℂ)) 1 μ} + apply essSup_le_of_ae_le + simp only [EventuallyLE, eventually_iff, mem_ae_iff] + by_contra h + + have aux1 : ∃ B : Set α, MeasurableSet B ∧ B ⊆ {x | ‖f x‖₊ ≤ M}ᶜ ∧ 0 < μ B ∧ μ B < ⊤ := by + apply Measure.exists_subset_measure_lt_top (MeasurableSet.compl _) ((ne_eq _ _) ▸ h).bot_lt + convert hf.ennnorm measurableSet_Iic + rcases aux1 with ⟨B, hB⟩ + + let g : SimpleFunc α ℂ := { + toFun := B.indicator (fun _ ↦ ((μ B)⁻¹.toReal : ℂ)) + measurableSet_fiber' := by + intro x + simp [indicator_preimage] + rcases eq_or_ne x ((μ B)⁻¹.toReal : ℂ) with (H | H) + simp [H] + apply MeasurableSet.ite hB.1 (by simp only [MeasurableSet.univ, M]) + apply measurableSet_preimage measurable_zero (MeasurableSet.singleton _) + apply MeasurableSet.ite hB.1 _ (measurableSet_preimage measurable_zero + (MeasurableSet.singleton _)) + rw [preimage_const_of_not_mem] + apply MeasurableSet.empty + rw [mem_singleton_iff] + exact H.symm + finite_range' := by + have : range (B.indicator fun _ ↦ ((μ B)⁻¹.toReal : ℂ)) + ⊆ {0, ((μ B)⁻¹.toReal : ℂ)} := by + intro x + rw [Set.mem_range_indicator] + simp + rintro (h | h) + exact Or.intro_left _ h.1 + exact Or.intro_right _ h.2.symm + apply Set.Finite.subset _ this + simp only [finite_singleton, Finite.insert] + } + + have aux_μB : (μ B)⁻¹ = ‖(μ B)⁻¹.toReal‖₊ := by + have : (μ B)⁻¹ < ⊤ := by simp [hB.2.2.1] + generalize (μ B)⁻¹ = y at this -- better solution??? + cases y + simp only [lt_self_iff_false] at this + simp only [coe_toReal, nnnorm_eq] + + have : ¬ (M < snorm (f * (g : α → ℂ)) 1 μ) := by + simp + apply le_sSup + use g + constructor + simp [snorm, snorm', lintegral_indicator_const] + have : ∫⁻ (a : α), (B.indicator (fun _ ↦ (μ B)⁻¹) a) ∂ μ ≤ 1 := by + rw [lintegral_indicator_const hB.1, + ENNReal.inv_mul_cancel hB.2.2.1.ne.symm hB.2.2.2.ne] + convert this + rename α => x + by_cases hx : x ∈ B + simp [indicator_of_mem hx, aux_μB.symm] + simp [indicator_of_not_mem hx] + rfl + + apply this + calc M = ∫⁻ _ in B, (μ B)⁻¹ * M ∂ μ := by { + rw [setLIntegral_const, mul_assoc, mul_comm M, ← mul_assoc, + ENNReal.inv_mul_cancel hB.2.2.1.ne.symm hB.2.2.2.ne, one_mul] + } + _ < ∫⁻ x in B, (μ B)⁻¹ * ‖f x‖₊ ∂ μ := by + apply setLIntegral_strict_mono hB.1 hB.2.2.1.ne.symm (hf.ennnorm.const_mul _) + rw [setLIntegral_const] + apply mul_ne_top (mul_ne_top (ENNReal.inv_ne_top.mpr + hB.2.2.1.ne.symm) hf'.ne) hB.2.2.2.ne + apply eventually_of_forall + intro x hx + rw [ENNReal.mul_lt_mul_left (ENNReal.inv_ne_zero.mpr hB.2.2.2.ne) + (ENNReal.inv_ne_top.mpr hB.2.2.1.ne.symm)] + convert hB.2.1 hx + simp only [mem_compl_iff, mem_setOf_eq, not_le] + _ = ∫⁻ x : α, B.indicator (fun a ↦ ‖f a‖₊ * ‖(fun _ ↦ ((μ B)⁻¹.toReal : ℂ)) a‖₊) x ∂μ := by + rw [lintegral_indicator _ hB.1] + simp [mul_comm] + congr with x; congr + _ = snorm (f * B.indicator fun _ ↦ ((μ B)⁻¹.toReal : ℂ)) 1 μ := by + simp [snorm, snorm'] + congr with x + by_cases hx : x ∈ B + simp only [indicator_of_mem hx, nnnorm_real] + simp only [indicator_of_not_mem hx, nnnorm_zero, ENNReal.coe_zero, mul_zero] + +lemma snormEssSup_eq_sSup_snorm' [SigmaFinite μ] (f : α → ℂ) (hf : AEMeasurable f μ) +(hf' : sSup {x |∃ g : SimpleFunc α ℂ, snorm g 1 μ ≤ 1 ∧ +x = snorm (f * (g : α → ℂ)) 1 μ} < ⊤): +snormEssSup f μ = sSup {x |∃ g : SimpleFunc α ℂ, snorm g 1 μ ≤ 1 +∧ x = snorm (f * (g : α → ℂ)) 1 μ} := by + + have aux1 {g : α → ℂ} : snorm (f * g) 1 μ = snorm (hf.mk * g) 1 μ := by + rw [snorm_congr_ae] + apply EventuallyEq.mul hf.ae_eq_mk EventuallyEq.rfl + + have : sSup {x |∃ g : SimpleFunc α ℂ, snorm g 1 μ ≤ 1 ∧ + x = snorm (hf.mk * (g : α → ℂ)) 1 μ} = sSup {x |∃ g : SimpleFunc α ℂ, snorm g 1 μ ≤ 1 + ∧ x = snorm (f * (g : α → ℂ)) 1 μ} := by + congr with x; simp + constructor + . rintro ⟨g, hg⟩; use g; rw [aux1]; exact hg --- need better solution + . rintro ⟨g, hg⟩; use g; rw [← aux1]; exact hg + + calc snormEssSup f μ = snormEssSup hf.mk μ := snormEssSup_congr_ae hf.ae_eq_mk + _ = sSup {x |∃ g : SimpleFunc α ℂ, snorm g 1 μ ≤ 1 ∧ x + = snorm (hf.mk * (g : α → ℂ)) 1 μ} := by + apply snormEssSup_eq_sSup_snorm hf.mk hf.measurable_mk + . rwa [this] + _ = sSup {x |∃ g : SimpleFunc α ℂ, snorm g 1 μ ≤ 1 ∧ + x = snorm (f * (g : α → ℂ)) 1 μ} := this + + end MeasureTheory end @@ -1110,7 +1282,8 @@ x ^ (y + z) = x ^ y * x ^ z := by simp only [hx0, coe_zero, add_pos hy hz, zero_rpow_of_pos, hy, hz, mul_zero] apply ENNReal.rpow_add <;> simp [hx0'] -lemma ENNReal.essSup_const_rpow (f : α → ℝ≥0∞) {r : ℝ} (hr : 0 < r) : (essSup f μ) ^ r = essSup (fun x ↦ (f x) ^ r) μ := +lemma ENNReal.essSup_const_rpow (f : α → ℝ≥0∞) {r : ℝ} (hr : 0 < r) : +(essSup f μ) ^ r = essSup (fun x ↦ (f x) ^ r) μ := OrderIso.essSup_apply (g := ENNReal.orderIsoRpow r hr) _ _ def InSegment.toIsConjugateExponent (p₀ p₁ p : ℝ≥0∞) (t s : ℝ≥0) (hp₀ : 0 < p₀) @@ -1119,16 +1292,26 @@ def InSegment.toIsConjugateExponent (p₀ p₁ p : ℝ≥0∞) (t s : ℝ≥0) Real.IsConjExponent (p₀⁻¹ * (s : ℝ≥0∞) * p).toReal ⁻¹ (p₁⁻¹ * (t : ℝ≥0∞) * p).toReal ⁻¹ where one_lt := by --- [one_lt_inv (a := (p₀⁻¹ * ↑s * p).toReal)] does not work ha?? - rw [lt_inv zero_lt_one (ENNReal.toReal_pos (mul_ne_zero (mul_ne_zero (ENNReal.inv_ne_zero.mpr (LT.lt.ne_top hp₀₁)) (by rwa [ENNReal.coe_ne_zero])) hp0') (ENNReal.mul_ne_top (ENNReal.mul_ne_top (ENNReal.inv_ne_top.mpr hp₀.ne.symm) ENNReal.coe_ne_top) hpt')), mul_comm p₀⁻¹] + rw [lt_inv zero_lt_one (ENNReal.toReal_pos (mul_ne_zero (mul_ne_zero (ENNReal.inv_ne_zero.mpr + (LT.lt.ne_top hp₀₁)) (by rwa [ENNReal.coe_ne_zero])) hp0') (ENNReal.mul_ne_top + (ENNReal.mul_ne_top (ENNReal.inv_ne_top.mpr hp₀.ne.symm) ENNReal.coe_ne_top) hpt')), + mul_comm p₀⁻¹] apply_fun (fun x ↦ x * p) at hp rw [add_mul, ENNReal.inv_mul_cancel hp0' hpt'] at hp - calc (↑s * p₀⁻¹ * p).toReal < (↑s * p₀⁻¹ * p + ↑t * p₁⁻¹ * p).toReal := ENNReal.toReal_strict_mono (hp ▸ one_ne_top) <| ENNReal.lt_add_right ((ENNReal.add_ne_top (b := ↑t * p₁⁻¹ * p)).mp (hp ▸ one_ne_top)).1 (mul_ne_zero (mul_ne_zero (by rwa [ENNReal.coe_ne_zero]) (by rwa [ENNReal.inv_ne_zero])) hp0') + calc (↑s * p₀⁻¹ * p).toReal < (↑s * p₀⁻¹ * p + ↑t * p₁⁻¹ * p).toReal := + ENNReal.toReal_strict_mono (hp ▸ one_ne_top) <| ENNReal.lt_add_right ( + (ENNReal.add_ne_top (b := ↑t * p₁⁻¹ * p)).mp (hp ▸ one_ne_top)).1 ( + mul_ne_zero (mul_ne_zero (by rwa [ENNReal.coe_ne_zero]) (by rwa [ENNReal.inv_ne_zero])) hp0') _ = 1⁻¹ := by simp [hp] inv_add_inv_conj := by - rw [inv_inv, inv_inv, ← ENNReal.toReal_add (ENNReal.mul_ne_top (ENNReal.mul_ne_top (ENNReal.inv_ne_top.mpr hp₀.ne.symm) ENNReal.coe_ne_top) hpt') (ENNReal.mul_ne_top (ENNReal.mul_ne_top (ENNReal.inv_ne_top.mpr hp₁.ne.symm) ENNReal.coe_ne_top) hpt'), ← ENNReal.one_toReal] + rw [inv_inv, inv_inv, ← ENNReal.toReal_add (ENNReal.mul_ne_top (ENNReal.mul_ne_top ( + ENNReal.inv_ne_top.mpr hp₀.ne.symm) ENNReal.coe_ne_top) hpt') (ENNReal.mul_ne_top ( + ENNReal.mul_ne_top (ENNReal.inv_ne_top.mpr hp₁.ne.symm) ENNReal.coe_ne_top) hpt'), + ← ENNReal.one_toReal] congr apply_fun (fun x ↦ x * p) at hp - rwa [add_mul, ENNReal.inv_mul_cancel hp0' hpt', mul_comm (ofNNReal s), mul_comm (ofNNReal t)] at hp + rwa [add_mul, ENNReal.inv_mul_cancel hp0' hpt', + mul_comm (ofNNReal s), mul_comm (ofNNReal t)] at hp lemma lintegral_mul_le_segment_exponent_aux {p₀ p₁ p : ℝ≥0∞} {t s : ℝ≥0} (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀₁ : p₀ < p₁) (hp : p⁻¹ = s / p₀ + t / p₁) @@ -1136,7 +1319,9 @@ lemma lintegral_mul_le_segment_exponent_aux {p₀ p₁ p : ℝ≥0∞} {t s : ∫⁻ (a : α), ↑‖f a‖₊ ^ (↑s * p.toReal) * ↑‖f a‖₊ ^ (↑t * p.toReal) ∂μ ≤ snorm (↑f) p₀ μ ^ (↑s * p.toReal) * snorm (↑f) p₁ μ ^ (↑t * p.toReal) := by rw [eq_comm] at hp + rw [eq_comm] at hp rcases eq_or_ne p ⊤ with hpt | hpt' + symm at hp simp [hpt, add_eq_zero, hs0', ht0'] at hp exact False.elim <| ne_top_of_lt hp₀₁ hp.1 @@ -1146,7 +1331,7 @@ lemma lintegral_mul_le_segment_exponent_aux {p₀ p₁ p : ℝ≥0∞} {t s : simp only [hp₁t, div_top, add_zero] at hp apply_fun (fun x ↦ x * p₀) at hp rw [ENNReal.div_mul_cancel hp₀.ne.symm (ne_top_of_lt hp₀₁)] at hp - have hp_aux : s * p = p₀ := by rw [hp, mul_assoc, mul_comm p₀, ← mul_assoc, + have hp_aux : s * p = p₀ := by rw [← hp, mul_assoc, mul_comm p₀, ← mul_assoc, ENNReal.inv_mul_cancel hp0' hpt', one_mul] apply le_trans (lintegral_mul_le_one_top _ (AEMeasurable.pow_const hf.ennnorm _)) (le_of_eq _) @@ -1154,33 +1339,41 @@ lemma lintegral_mul_le_segment_exponent_aux {p₀ p₁ p : ℝ≥0∞} {t s : rw [← ENNReal.rpow_mul, ← ENNReal.rpow_one (∫⁻ (a : α), ↑‖f a‖₊ ^ (↑s * p.toReal) ∂μ)] congr; ext; congr simp only [← hp_aux, toReal_mul, coe_toReal] -- lemma? to rw - simp only [← hp_aux, toReal_mul, coe_toReal, mul_inv_rev, mul_assoc p.toReal⁻¹, ← mul_assoc, inv_mul_cancel (by rwa [NNReal.coe_ne_zero]), one_mul, + simp only [← hp_aux, toReal_mul, coe_toReal, mul_inv_rev, mul_assoc p.toReal⁻¹, + ← mul_assoc, inv_mul_cancel (by rwa [NNReal.coe_ne_zero]), one_mul, inv_mul_cancel (ENNReal.toReal_ne_zero.mpr ⟨hp0', hpt'⟩)] apply (ENNReal.essSup_const_rpow _ ?_).symm - exact Real.mul_pos (lt_of_le_of_ne (NNReal.coe_nonneg t) (NNReal.coe_ne_zero.mpr ht0').symm) (ENNReal.toReal_pos hp0' hpt') + exact Real.mul_pos (lt_of_le_of_ne (NNReal.coe_nonneg t) (NNReal.coe_ne_zero.mpr ht0').symm) + (ENNReal.toReal_pos hp0' hpt') simp only [snorm, (ne_of_lt hp₀).symm, ↓reduceIte, LT.lt.ne_top hp₀₁, snorm', one_div, (ne_of_lt hp₁).symm, hp₁t', ge_iff_le] - apply le_trans (ENNReal.lintegral_mul_le_Lp_mul_Lq μ (by apply InSegment.toIsConjugateExponent p₀ p₁ p t s; repeat assumption) (AEMeasurable.pow_const hf.ennnorm _) (AEMeasurable.pow_const hf.ennnorm _)) (le_of_eq _) - + apply le_trans (ENNReal.lintegral_mul_le_Lp_mul_Lq μ + (InSegment.toIsConjugateExponent p₀ p₁ p t s hp₀ hp₁ hp₀₁ hp.symm hp0' ht0' hs0' hpt' hp₁t') + (AEMeasurable.pow_const hf.ennnorm _) (AEMeasurable.pow_const hf.ennnorm _)) (le_of_eq _) simp only [← ENNReal.rpow_mul] congr simp only [toReal_mul, coe_toReal, mul_inv_rev] - rw [toReal_inv, inv_inv, ← mul_assoc, ← mul_assoc, mul_comm _ p.toReal, mul_assoc p.toReal, mul_comm s.toReal, ← mul_assoc, mul_assoc _ s.toReal, - mul_inv_cancel (ENNReal.toReal_ne_zero.mpr ⟨hp0', hpt'⟩), mul_inv_cancel (by rwa [NNReal.coe_ne_zero]), one_mul, one_mul] + rw [toReal_inv, inv_inv, ← mul_assoc, ← mul_assoc, mul_comm _ p.toReal, + mul_assoc p.toReal, mul_comm s.toReal, ← mul_assoc, mul_assoc _ s.toReal, + mul_inv_cancel (ENNReal.toReal_ne_zero.mpr ⟨hp0', hpt'⟩), mul_inv_cancel + (by rwa [NNReal.coe_ne_zero]), one_mul, one_mul] rotate_left 1 simp only [toReal_mul, coe_toReal, mul_inv_rev] - rw [toReal_inv, inv_inv, ← mul_assoc, ← mul_assoc, mul_comm _ p.toReal, mul_assoc p.toReal, mul_comm t.toReal, ← mul_assoc, mul_assoc _ t.toReal, - mul_inv_cancel (ENNReal.toReal_ne_zero.mpr ⟨hp0', hpt'⟩), mul_inv_cancel (by rwa [NNReal.coe_ne_zero]), one_mul, one_mul] + rw [toReal_inv, inv_inv, ← mul_assoc, ← mul_assoc, mul_comm _ p.toReal, + mul_assoc p.toReal, mul_comm t.toReal, ← mul_assoc, mul_assoc _ t.toReal, + mul_inv_cancel (ENNReal.toReal_ne_zero.mpr ⟨hp0', hpt'⟩), mul_inv_cancel + (by rwa [NNReal.coe_ne_zero]), one_mul, one_mul] repeat' simp [← mul_assoc, ENNReal.toReal_inv] -lemma lintegral_mul_le_segment_exponent {p₀ p₁ p : ℝ≥0∞} {s t : ℝ≥0} (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀₁ : p₀ < p₁) (hp : p⁻¹ = s / p₀ + t / p₁) (hst : s + t = 1) -(f : α → E) (hf : AEMeasurable f μ) +lemma lintegral_mul_le_segment_exponent {p₀ p₁ p : ℝ≥0∞} {s t : ℝ≥0} +(hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀₁ : p₀ < p₁) (hp : p⁻¹ = s / p₀ + t / p₁) +(hst : s + t = 1) (f : α → E) (hf : AEMeasurable f μ) : snorm f p μ ≤ (snorm f p₀ μ) ^ (s : ℝ) * (snorm f p₁ μ) ^ (t : ℝ) := by rw [eq_comm] at hp have hp0' : p ≠ 0 := by @@ -1205,11 +1398,14 @@ lemma lintegral_mul_le_segment_exponent {p₀ p₁ p : ℝ≥0∞} {s t : ℝ≥ . simp [hpt, add_eq_zero, hs0', ht0'] at hp exact False.elim <| ne_top_of_lt hp₀₁ hp.1 - . calc snorm f p μ = (∫⁻ (a : α), ↑‖f a‖₊ ^ p.toReal ∂μ) ^ p.toReal⁻¹ := by simp [snorm, hp0', hpt', snorm'] + . calc snorm f p μ = (∫⁻ (a : α), ↑‖f a‖₊ ^ p.toReal ∂μ) ^ p.toReal⁻¹ := by + {simp [snorm, hp0', hpt', snorm']} _ = (∫⁻ (a : α), ↑‖f a‖₊ ^ (s * p.toReal) * ↑‖f a‖₊ ^ (t * p.toReal) ∂μ) ^ p.toReal⁻¹ := by congr; ext - rw [← ENNReal.rpow_add_of_pos (s * p.toReal) (t * p.toReal) ?_ ?_, ← add_mul, ← NNReal.coe_add, hst, NNReal.coe_one, one_mul] - <;> apply Real.mul_pos (lt_of_le_of_ne (NNReal.coe_nonneg _) (NNReal.coe_ne_zero.mpr (by assumption)).symm) (ENNReal.toReal_pos hp0' hpt') + rw [← ENNReal.rpow_add_of_pos (s * p.toReal) (t * p.toReal) ?_ ?_, ← add_mul, + ← NNReal.coe_add, hst, NNReal.coe_one, one_mul] + <;> apply Real.mul_pos (lt_of_le_of_ne (NNReal.coe_nonneg _) + (NNReal.coe_ne_zero.mpr (by assumption)).symm) (ENNReal.toReal_pos hp0' hpt') _ ≤ ((snorm f p₀ μ) ^ (s * p.toReal) * (snorm f p₁ μ) ^ (t * p.toReal)) ^ p.toReal⁻¹ := by gcongr rw [eq_comm] at hp @@ -1227,12 +1423,14 @@ theorem exists_lnorm_le_of_subadditive_of_lbounded {p₀ p₁ q₀ q₁ : ℝ≥ (T : (α → E₁) →ₗ[ℂ] β → E₂) (h₀T : HasStrongType T p₀ q₀ μ ν M₀) (h₁T : HasStrongType T p₁ q₁ μ ν M₁) - {θ η : ℝ≥0} (hθη : θ + η = 1) + {θ η : ℝ≥0} (hθη : θ + η = 1) (hθ : 0 < θ) (hη : 0 < η) + -- when θ = 0 it is trivial should discard this assumtption later {p q : ℝ≥0∞} (hp : p⁻¹ = θ / p₀ + η / p₁) (hq : q⁻¹ = θ / q₀ + η / q₁) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) : HasStrongType T p q μ ν (M₀ ^ (θ : ℝ) * M₁ ^ (η : ℝ)) := by rcases eq_or_ne p₀ p₁ with (hp₀₁ | hp₀₁) - . simp only [hp₀₁, ← ENNReal.add_div, ← ENNReal.coe_add, hθη, ENNReal.coe_one, one_div, inv_inj] at hp + . simp only [hp₀₁, ← ENNReal.add_div, ← ENNReal.coe_add, hθη, ENNReal.coe_one, + one_div, inv_inj] at hp intro f hf have aesm := (h₀T f (by rwa [hp₀₁, ← hp])).1 constructor @@ -1242,9 +1440,12 @@ theorem exists_lnorm_le_of_subadditive_of_lbounded {p₀ p₁ q₀ q₁ : ℝ≥ exact lintegral_mul_le_segment_exponent hq₀ hq₁ hq₀₁ hq hθη _ aesm.aemeasurable rcases lt_or_eq_of_le hq₀₁ with hq₀₁ | hq₀₁ rw [mul_comm] - apply lintegral_mul_le_segment_exponent hq₁ hq₀ hq₀₁ (by rwa [add_comm]) (by rwa [add_comm]) _ aesm.aemeasurable - simp only [hq₀₁, ← ENNReal.add_div, ← ENNReal.coe_add, hθη, ENNReal.coe_one, one_div, inv_inj] at hq - rw [hq₀₁, ← hq, ← ENNReal.rpow_add_of_nonneg _ _ (by norm_num) (by norm_num), ← NNReal.coe_add, hθη, NNReal.coe_one, ENNReal.rpow_one] + apply lintegral_mul_le_segment_exponent hq₁ hq₀ hq₀₁ (by rwa [add_comm]) + (by rwa [add_comm]) _ aesm.aemeasurable + simp only [hq₀₁, ← ENNReal.add_div, ← ENNReal.coe_add, hθη, ENNReal.coe_one, + one_div, inv_inj] at hq + rw [hq₀₁, ← hq, ← ENNReal.rpow_add_of_nonneg _ _ (by norm_num) + (by norm_num), ← NNReal.coe_add, hθη, NNReal.coe_one, ENNReal.rpow_one] } _ ≤ (M₀ * snorm f p μ) ^ (θ : ℝ) * (M₁ * snorm f p μ) ^ (η : ℝ) := by gcongr @@ -1253,5 +1454,11 @@ theorem exists_lnorm_le_of_subadditive_of_lbounded {p₀ p₁ q₀ q₁ : ℝ≥ rw [hp] at * apply (h₁T f hf).2 _ = ↑(M₀ ^ (θ : ℝ) * M₁ ^ (η : ℝ)) * snorm f p μ := by - rw [ENNReal.mul_rpow_of_nonneg _ _ (by norm_num), ENNReal.mul_rpow_of_nonneg _ _ (by norm_num), ← mul_assoc, mul_assoc ((M₀ : ℝ≥0∞) ^ (θ : ℝ)), mul_comm _ ((M₁ : ℝ≥0∞) ^ (η : ℝ)), ← mul_assoc, mul_assoc, ← ENNReal.rpow_add_of_nonneg _ _ (by norm_num) (by norm_num), ← NNReal.coe_add, hθη, NNReal.coe_one, ENNReal.rpow_one, coe_mul, ENNReal.coe_rpow_of_ne_zero hM₀.ne.symm, ENNReal.coe_rpow_of_ne_zero hM₁.ne.symm] - . sorry + rw [ENNReal.mul_rpow_of_nonneg _ _ (by norm_num), + ENNReal.mul_rpow_of_nonneg _ _ (by norm_num), + ← mul_assoc, mul_assoc ((M₀ : ℝ≥0∞) ^ (θ : ℝ)), mul_comm _ ((M₁ : ℝ≥0∞) ^ (η : ℝ)), + ← mul_assoc, mul_assoc, ← ENNReal.rpow_add_of_nonneg _ _ (by norm_num) (by norm_num), + ← NNReal.coe_add, hθη, NNReal.coe_one, ENNReal.rpow_one, + coe_mul, ENNReal.coe_rpow_of_ne_zero hM₀.ne.symm, + ENNReal.coe_rpow_of_ne_zero hM₁.ne.symm] + . sorry diff --git a/blueprint/src/chapter/interpolation.tex b/blueprint/src/chapter/interpolation.tex index 764e48c..90d41d0 100644 --- a/blueprint/src/chapter/interpolation.tex +++ b/blueprint/src/chapter/interpolation.tex @@ -95,20 +95,66 @@ \section{Rietz-Thorin's Interpolation Theorem} \begin{lemma} - \label{lem:lp_of_sup_norm} + \label{lem:snorm_eq_sSup_snorm} %\uses{} - %\lean{} - %\leanok - Let $p$ and $q$ be conjugate exponents and let $g$ be integrable on all sets of finite measure. If - \[ \sup_{||f||_{L^p} \leq 1, \ f \text{ simple}} \left| \int fg \right| = M < \infty \] - then $g$ is in $L^q$ and $||g||_{L^q} = M$. + \lean{MeasureTheory.snorm_eq_sSup_snorm} + \leanok + Let $p$ and $q$ be real conjugate exponents. Let $f$ be measurable. Then + \[ \|f\|_{L^q} = \sup_{\|g\|_{L^p} \leq 1, \ g \text{ simple}} \| fg \|_{L^1}.\] + + In particular, if the right hand side formula is finite, $f\in L^q$. \end{lemma} \begin{proof} % \uses{} % Put any results used in the proof but not in the statement here - % \leanok % uncomment if the lemma has been proven - Details to be filled later. + \leanok % uncomment if the lemma has been proven + That $$\sup_{\|g\|_{L^p} \leq 1, \ g \text{ simple}} \| fg \|_{L^1} \le \|f\|_{L^q}$$ + follows from Hölder's inequality. + + The other direction is trivial when $\|f\|_{L^q}=0$. Suppose $\|f\|_{L^q}\ne 0$. + Set $$g = \cfrac{|f|^{p-1}}{\|f\|_{L^p}^{p-1}}.$$ + Then $\|g\|_{L^p} = 1$. + \begin{align*} + \|f\|_{L^q} &= \| fg \|_{L^1} \\ + &= \sup_{n \in \mathbb N} \| fg_n \|_{L^1} \tag{1}\\ + &\le \sup_{\|g\|_{L^p} \leq 1, \ g \text{ simple}} \| fg \|_{L^1} \tag{2} + \end{align*} + + In (1) and (2), $g_n$ is a monotone sequence of simple function approximating $g$ from below, + whose existence is basic real analysis. \end{proof} +\begin{lemma} + \label{lem:snormEssSup_eq_sSup_snorm} + %\uses{} + \lean{MeasureTheory.snormEssSup_eq_sSup_snorm} + \leanok + Let $f$ be measurable and the measure $\mu$ be $\sigma$-finite. Then + \[ \|f\|_{L^\infty} = \sup_{\|g\|_{L^1} \leq 1, \ g \text{ simple}} \| fg \|_{L^1}.\] +\end{lemma} + +\begin{proof} + \leanok + That $$\sup_{\|g\|_{L^1} \leq 1, \ g \text{ simple}} \| fg \|_{L^1} \le \|f\|_{L^\infty}$$ + follows from Hölder's inequality. + + Suppose $M:= \sup_{\|g\|_{L^1} \leq 1, \ g \text{ simple}} \| fg \|_{L^1} < \|f\|_{L^\infty}$. + Then $\{x | |f(x)| \ge M \}$ has positive measure. Since $\mu$ is $\sigma$-finite, we have a subset $B \subset \{x | |f(x)| \ge M \}$ with finite positive measure + by \href{https://leanprover-community.github.io/mathlib4_docs/Mathlib/MeasureTheory/Measure/Typeclasses.html#MeasureTheory.Measure.exists_subset_measure_lt_top}{a classical lemma.} Now set + $$h := \mu(B)^{-1} \chi_B.$$ + Then we have + \begin{align*} + M &= \int_B \mu (B)^{-1} M d\mu \\ + &< \int_B \mu (B) |f| d\mu \\ + &= \|fh\|_{L^1}. + \end{align*} + But $\|h\|=1$ and $h$ is simple, so $\|fh\|_{L^1} \le M$, contradiction. + +\end{proof} + + + + + \begin{comment} (Note: This is used by Stein-Shakarchi to prove the dual of $L^p$ is $L^q$, so it may be already formalized by the time we get to this point?)\\\\