-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrbtree.erl
571 lines (447 loc) · 13.7 KB
/
rbtree.erl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
%%
%% Copyright 2012 - 2013 Dmitry Kolesnikov, All Rights Reserved
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% @description
%% red-black tree (see Okasaki "Purely Functional Data Structures")
-module(rbtree).
-behavior(maplike).
-behavior(traversable).
-behavior(foldable).
-include("datum.hrl").
-export([
new/0, %% O(1)
new/1, %% O(1)
build/1, %% O(n)
build/2, %% O(n)
%%
%% map-like
append/2, %% O(log n)
insert/3, %% O(log n)
lookup/2, %% O(log n)
remove/2, %% O(log n)
has/2, %% O(log n)
keys/1, %% O(n)
apply/3, %% O(log n)
%%
%% traversable
head/1,
tail/1,
list/1, %% O(n)
is_empty/1, %% O(n)
drop/2, %% O(n)
dropwhile/2, %% O(log n)
filter/2, %% O(n)
foreach/2, %% O(n)
map/2, %% O(n)
split/2, %% O(n)
splitwhile/2, %% O(log n)
take/2, %% O(n)
takewhile/2, %% O(log n)
%%
%% foldable
fold/3,
foldl/3,
foldr/3,
unfold/2,
min/1,
max/1
]).
%%
%% data types
-type tree() :: datum:option( {color(), tree(), key(), val(), tree()} ).
-type color():: r | b.
-type key() :: _.
-type val() :: _.
%%
%% create new empty red-black tree
-spec new() -> datum:tree(_).
new() ->
new(fun datum:compare/2).
%%
%% create new binary search tree
-spec new(datum:compare(_)) -> datum:tree(_).
new(Ord) ->
#tree{ford = Ord, tree = ?None}.
%%
%% build tree from another traversable structure
-spec build(_) -> datum:tree(_).
build(List) ->
maplike:build(?MODULE, List).
%%
%% build tree from another traversable structure
-spec build(datum:compare(_), [_]) -> datum:tree(_).
build(Ord, List) ->
maplike:build(?MODULE, Ord, List).
%%%----------------------------------------------------------------------------
%%%
%%% map-like
%%%
%%%----------------------------------------------------------------------------
%%
%% append a new key/value pair to collection
-spec append({key(), val()}, datum:maplike(_, _)) -> datum:maplike(_, _).
append({Key, Val}, #tree{} = Tree) ->
insert(Key, Val, Tree);
append(Key, #tree{} = Tree) ->
insert(Key, ?None, Tree).
%%
%% insert a new a key/value pair to collection
-spec insert(key(), val(), datum:maplike(_, _)) -> datum:maplike(_, _).
insert(Key, Val, #tree{ford = Ord, tree = T} = Tree) ->
Tree#tree{tree = erlang:setelement(1, insert_el(Ord, Key, Val, T), b)}.
insert_el(_, K, V, ?None) ->
{r, ?None, K, V, ?None};
insert_el(Ord, K, V, {_, _, Kx, _, _} = T) ->
insert_el(Ord(K, Kx), Ord, K, V, T).
insert_el(eq, _, _, V, {C, L, K, _, R}) ->
{C, L, K, V, R};
insert_el(gt, Ord, K, V, {C, L, Kx, Vx, R}) ->
balance({C, L, Kx, Vx, insert_el(Ord, K, V, R)});
insert_el(lt, Ord, K, V, {C, L, Kx, Vx, R}) ->
balance({C, insert_el(Ord, K, V, L), Kx, Vx, R}).
%%
%% optionally returns the value associated with key
%%
-spec lookup(key(), datum:maplike(_, _)) -> datum:option( val() ).
lookup(Key, #tree{ford = Ord, tree = T}) ->
lookup_el(Ord, Key, T).
lookup_el(_, _, ?None) ->
?None;
lookup_el(Ord, K, {_, _, Kx, _, _} = T) ->
lookup_el(Ord(K, Kx), Ord, K, T).
lookup_el(eq, _, _, {_, _, _, Vx, _}) ->
Vx;
lookup_el(gt, Ord, K, {_, _, _, _, R}) ->
lookup_el(Ord, K, R);
lookup_el(lt, Ord, K, {_, L, _, _, _}) ->
lookup_el(Ord, K, L).
%%
%% remove key/value pair from collection
-spec remove(key(), datum:maplike(_, _)) -> datum:maplike(_, _).
remove(K, #tree{ford = Ord, tree = T} = Tree) ->
Tree#tree{tree = remove_el(Ord, K, T)}.
remove_el(_, _, ?None) ->
?None;
remove_el(Ord, K, {_, _, Kx, _, _} = T) ->
remove_el(Ord(K, Kx), Ord, K, T).
remove_el(eq, _, _, {_, A, _, _, ?None}) ->
A;
remove_el(eq, _, _, {_, ?None, _, _, B}) ->
B;
remove_el(eq, _, _, {C, A, _, _, B0}) ->
{{K, V}, B1} = take_left_node(B0),
balance({C, A, K, V, B1});
remove_el(gt, Ord, K, {C, A, Kx, Vx, B}) ->
balance({C, A, Kx, Vx, remove_el(Ord, K, B)});
remove_el(lt, Ord, K, {C, A, Kx, Vx, B}) ->
balance({C, remove_el(Ord, K, A), Kx, Vx, B}).
take_left_node({_, ?None, K, V, B}) ->
{{K, V}, B};
take_left_node({C, A0, K, V, B}) ->
{N, A1} = take_left_node(A0),
{N, {C, A1, K, V, B}}.
%%
%% check if the collection has an association
%%
-spec has(key(), datum:maplike(_, _)) -> true | false.
has(Key, Tree) ->
lookup(Key, Tree) =/= undefined.
%%
%% collects all keys of this collection to list
%%
-spec keys(datum:maplike(_, _)) -> [_].
keys(Tree) ->
maplike:keys(?MODULE, Tree).
%%
%% apply function on element
-spec apply(key(), fun((datum:option(_)) -> _), datum:maplike(_, _)) -> datum:maplike(_, _).
apply(Key, Fun, #tree{ford = Ord, tree = T} = Tree) ->
Tree#tree{tree = erlang:setelement(1, apply_el(Ord, Key, Fun, T), b)}.
apply_el(_, K, Fun, ?None) ->
{r, ?None, K, Fun(undefined), ?None};
apply_el(Ord, K, Fun, {_, _, Kx, _, _} = T) ->
apply_el(Ord(K, Kx), Ord, K, Fun, T).
apply_el(eq, _, _, Fun, {C, A, Kx, Vx, B}) ->
{C, A, Kx, Fun(Vx), B};
apply_el(gt, Ord, K, Fun, {C, A, Kx, Vx, B}) ->
balance({C, A, Kx, Vx, apply_el(Ord, K, Fun, B)});
apply_el(lt, Ord, K, Fun, {C, A, Kx, Vx, B}) ->
balance({C, apply_el(Ord, K, Fun, A), Kx, Vx, B}).
%%%----------------------------------------------------------------------------
%%%
%%% traversable
%%%
%%%----------------------------------------------------------------------------
%%
%% take collection and return head element of collection
%%
-spec head(datum:traversable(_)) -> datum:option(_).
head(_) ->
exit(not_implemented).
%%
%% take collection and return its suffix (all elements except the first)
%%
-spec tail(datum:traversable(_)) -> datum:traversable(_).
tail(_) ->
exit(not_implemented).
%%
%% converts the collection to Erlang list
%%
-spec list(datum:traversable(_)) -> [_].
list(Tree) ->
foldr(fun(Pair, Acc) -> [Pair | Acc] end, [], Tree).
%%
%% return true if collection is empty
%%
-spec is_empty(datum:traversable(_)) -> true | false.
is_empty(#tree{tree = ?None}) ->
true;
is_empty(_) ->
false.
%%
%% return the suffix of collection that starts at the next element after nth.
%% drop first n elements
%%
-spec drop(integer(), datum:traversable(_)) -> datum:traversable(_).
drop(N, #tree{tree = T} = Tree) ->
Tree#tree{tree = erlang:element(2, drop_el(N, T))}.
drop_el(N, ?None) ->
{N, ?None};
drop_el(N, {C, A, K, V, B}) ->
case drop_el(N, A) of
{0, Ax} ->
{0, {C, Ax, K, V, B}};
{M,_Ax} ->
drop_el(M - 1, B)
end.
%%
%% drops elements from collection while predicate returns true and
%% returns remaining stream suffix.
%%
-spec dropwhile(datum:predicate(_), datum:traversable(_)) -> datum:traversable(_).
dropwhile(Pred, #tree{tree = T} = Tree) ->
Tree#tree{tree = dropwhile_el(Pred, T)}.
dropwhile_el(_, ?None) ->
?None;
dropwhile_el(Pred, {C, A, K, V, B}) ->
case Pred({K, V}) of
false ->
{C, dropwhile_el(Pred, A), K, V, B};
true ->
dropwhile_el(Pred, B)
end.
%%
%% returns a newly-allocated collection that contains only those elements of the
%% input collection for which predicate is true.
%%
-spec filter(datum:predicate(_), datum:traversable(_)) -> datum:traversable(_).
filter(Pred, #tree{tree = T} = Tree) ->
Tree#tree{tree = filter_el(Pred, T)}.
filter_el(_, ?None) ->
?None;
filter_el(Pred, {C, A0, K, V, B0}) ->
A1 = filter_el(Pred, A0),
case Pred({K, V}) of
false ->
case filter_el(Pred, B0) of
?None ->
A1;
B1 ->
{{Kx, Vx}, B2} = take_left_node(B1),
{C, A1, Kx, Vx, B2}
end;
true ->
{C, A1, K, V, filter_el(Pred, B0)}
end.
%%
%% applies a function to each collection element for its side-effects;
%% it returns nothing.
%%
-spec foreach(datum:effect(_), datum:traversable(_)) -> ok.
foreach(Pred, #tree{tree = T}) ->
foreach_el(Pred, T).
foreach_el(_, ?None) ->
ok;
foreach_el(Pred, {_, A, K, V, B}) ->
foreach_el(Pred, A),
Pred({K, V}),
foreach_el(Pred, B).
%%
%% create a new collection by apply a function to each element of input collection.
%%
-spec map(fun((_) -> _), datum:traversable(_)) -> datum:traversable(_).
map(Fun, #tree{tree = T} = Tree) ->
Tree#tree{tree = map_el(Fun, T)}.
map_el(_, ?None) ->
?None;
map_el(Fun, {C, A, K, V, B}) ->
{C, map_el(Fun, A), K, Fun({K, V}), map_el(Fun, B)}.
%%
%% partitions collection into two collection. The split behaves as if it is defined as
%% consequent take(N, Seq), drop(N, Seq).
%%
-spec split(integer(), datum:traversable(_)) -> {datum:traversable(_), datum:traversable(_)}.
split(N, #tree{ford = Ord, tree = T}) ->
{_, A, B} = split_el(N, T),
{#tree{ford = Ord, tree = A}, #tree{ford = Ord, tree = B}}.
split_el(N, ?None) ->
{N, ?None, ?None};
split_el(N, {C, A, K, V, B}) ->
case split_el(N, A) of
{0, A1, A2} ->
{0, A1, {C, A2, K, V, B}};
{N1, _, _} ->
{N2, B1, B2} = split_el(N1 - 1, B),
{N2, {C, A, K, V, B1}, B2}
end.
%%
%% partitions stream into two streams according to predicate.
%% The splitwith/2 behaves as if it is defined as consequent
%% takewhile(Pred, Seq), dropwhile(Pred, Seq)
%%
-spec splitwhile(datum:predicate(_), datum:traversable(_)) -> {datum:traversable(_), datum:traversable(_)}.
splitwhile(Pred, #tree{ford = Ord, tree = T}) ->
{A, B} = splitwhile_el(Pred, T),
{#tree{ford = Ord, tree = A}, #tree{ford = Ord, tree = B}}.
splitwhile_el(_, ?None) ->
{?None, ?None};
splitwhile_el(Fun, {C, A, K, V, B}) ->
case Fun({K, V}) of
false ->
{Ax, Bx} = splitwhile_el(Fun, A),
{Ax, {C, Bx, K, V, B}};
true ->
{Ax, Bx} = splitwhile_el(Fun, B),
{{C, A, K, V, Ax}, Bx}
end.
%%
%% returns a newly-allocated collection containing the first n elements of
%% the input collection.
%%
-spec take(integer(), datum:traversable(_)) -> datum:traversable(_).
take(N, #tree{tree = T} = Tree) ->
Tree#tree{tree = erlang:element(2, take_el(N, T))}.
take_el(N, ?None) ->
{N, ?None};
take_el(N, {C, A, K, V, B}) ->
case take_el(N, A) of
{0, Ax} ->
{0, Ax};
{M, Ax} ->
{R, Bx} = take_el(M - 1, B),
{R, {C, Ax, K, V, Bx}}
end.
%%
%% returns a newly-allocated collection that contains those elements from
%% input collection while predicate returns true.
%%
-spec takewhile(datum:predicate(_), datum:traversable(_)) -> datum:traversable(_).
takewhile(Pred, #tree{tree = T} = Tree) ->
Tree#tree{tree = takewhile_el(Pred, T)}.
takewhile_el(_, ?None) ->
?None;
takewhile_el(Pred, {C, A, K, V, B}) ->
case Pred({K, V}) of
false ->
takewhile_el(Pred, A);
true ->
{C, A, K, V, takewhile_el(Pred, B)}
end.
%%%----------------------------------------------------------------------------
%%%
%%% foldable
%%%
%%%----------------------------------------------------------------------------
%%
%% Combine elements of a structure using a monoid
%% (with an associative binary operation)
%%
-spec fold(datum:monoid(_), _, datum:foldable(_)) -> _.
fold(Fun, Acc, Tree) ->
foldl(Fun, Acc, Tree).
%%
%% Left-associative fold of a structure
%%
-spec foldl(datum:monoid(_), _, datum:foldable(_)) -> _.
foldl(Fun, Acc, #tree{tree = T}) ->
foldl_el(Fun, Acc, T).
foldl_el(_Fun, Acc0, ?None) ->
Acc0;
foldl_el(Fun, Acc0, {_, A, K, V, B}) ->
foldl_el(Fun, Fun({K, V}, foldl_el(Fun, Acc0, A)), B).
%%
%% Right-associative fold of a structure
%%
-spec foldr(datum:monoid(_), _, datum:foldable(_)) -> _.
foldr(Fun, Acc, #tree{tree = T}) ->
foldr_el(Fun, Acc, T).
foldr_el(_Fun, Acc0, ?None) ->
Acc0;
foldr_el(Fun, Acc0, {_, A, K, V, B}) ->
foldr_el(Fun, Fun({K, V}, foldr_el(Fun, Acc0, B)), A).
%%
%% The fundamental recursive structure constructor,
%% it applies a function to each previous seed element in turn
%% to determine the next element.
%%
-spec unfold(fun((_) -> _), _) -> datum:foldable(_).
unfold(Fun, Seed) ->
unfold(Fun, Seed, new()).
unfold(Fun, Seed, Acc) ->
case Fun(Seed) of
{Head, Next} ->
unfold(Fun, Next, append(Head, Acc));
_ ->
Acc
end.
%%
%% return smallest element
-spec min(tree()) -> {key(), val()} | undefined.
min(#tree{tree = T}) ->
min_el(T).
min_el({_, ?None, K, V, _}) ->
{K, V};
min_el({_, A, _, _, _}) ->
min_el(A);
min_el(?None) ->
undefined.
%%
%% return largest element
-spec max(tree()) -> {key(), val()}.
max(#tree{tree = T}) ->
max_el(T).
max_el({_, _, K, V, ?None}) ->
{K, V};
max_el({_, _, _, _, B}) ->
max_el(B);
max_el(?None) ->
undefined.
%%%------------------------------------------------------------------
%%%
%%% private
%%%
%%%------------------------------------------------------------------
%%
%% see Okasaki "Purely Functional Data Structures", p 27
balance({b, {r, {r, A, Kx, Vx, B}, Ky, Vy, C}, Kz, Vz, D}) ->
{r, {b, A, Kx, Vx, B}, Ky, Vy, {b, C, Kz, Vz, D}};
balance({b, {r, A, Kx, Vx, {r, B, Ky, Vy, C}}, Kz, Vz, D}) ->
{r, {b, A, Kx, Vx, B}, Ky, Vy, {b, C, Kz, Vz, D}};
balance({b, A, Kx, Vx, {r, {r, B, Ky, Vy, C}, Kz, Vz, D}}) ->
{r, {b, A, Kx, Vx, B}, Ky, Vy, {b, C, Kz, Vz, D}};
balance({b, A, Kx, Vx, {r, B, Ky, Vy, {r, C, Kz, Vz, D}}}) ->
{r, {b, A, Kx, Vx, B}, Ky, Vy, {b, C, Kz, Vz, D}};
balance(T) ->
T.