-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_example_nowcasts_gif.py
313 lines (257 loc) · 10.5 KB
/
plot_example_nowcasts_gif.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""Plot example nowcasts in separate figures.
Author: Jenna Ritvanen <[email protected]>
"""
import argparse
import pyart
import matplotlib.pyplot as plt
from matplotlib import colors
import numpy as np
import os
from datetime import datetime
import imageio
from pathlib import Path
from utils import plot_array, load_config, read_advection_fields_from_h5
from verification.pincast_verif import io_tools
pyart.load_config(os.environ.get("PYART_CONFIG"))
if __name__ == "__main__":
argparser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
argparser.add_argument("configpath", type=str, help="Configuration file path")
argparser.add_argument("date", type=str, help="date to be plotted (YYYYmmddHHMM")
args = argparser.parse_args()
date = datetime.strptime(args.date, "%Y%m%d%H%M")
sample = date.strftime("%Y-%m-%d %H:%M:%S")
confpath = Path(args.configpath)
conf = load_config(confpath)
plt.style.use(conf.stylefile)
outdir = Path(conf.outdir) / date.strftime("%Y%m%d%H%M")
outdir.mkdir(parents=True, exist_ok=True)
duration_per_frame = 0.5
# how many nowcasts to plot
nrows = 2 + len(conf.nowcasts.keys())
ncols = max(len(conf.leadtimes), conf.n_input_images)
fig, axes = plt.subplots(
nrows=1, ncols=1, figsize=(5, 6), sharex="col", sharey="row"
)
input_file = "input_%Y%m%d%H%M.png"
output_file = "target_%Y%m%d%H%M.png"
nowcast_file = lambda m: f"nowcast_{m}_%Y%m%d%H%M.png"
dbs = dict()
dbs["measurements"] = conf.measurements.path
# Get observations
get_times = [*list(range(-conf.n_input_images + 1, 1)), *conf.leadtimes]
obs = io_tools.load_observations(
dbs["measurements"],
sample,
leadtimes=get_times,
)
times = io_tools._get_sample_names(sample, get_times)
try:
obs = io_tools.dBZ_list_to_rainrate(obs)
except:
raise ValueError("Some observation missing!")
# Read advection field
if conf.advection_field_path is not None:
adv_path = datetime.strftime(date, conf.advection_field_path)
adv_fields = read_advection_fields_from_h5(adv_path)
bbox_x_slice = slice(conf.adv_field_bbox[0], conf.adv_field_bbox[1])
bbox_y_slice = slice(conf.adv_field_bbox[2], conf.adv_field_bbox[3])
# TODO implement picking correct field if multiple exist
adv_field = adv_fields[next(iter(adv_fields))][:, bbox_x_slice, bbox_y_slice]
quiver_thin = 20
adv_field_x, adv_field_y = np.meshgrid(
np.arange(0, adv_field.shape[1]), np.arange(0, adv_field.shape[2])
)
adv_field_alpha = 1
adv_field_lw = 0.7
adv_field_color = "k"
else:
adv_field = None
# Plot input
for i in range(conf.n_input_images):
obs[i][obs[i] < conf.min_val] = np.nan
cbar = plot_array(axes, obs[i], qty="RR", colorbar=True)
# Plot advection field
if adv_field is not None:
axes.quiver(
adv_field_x[::quiver_thin, ::quiver_thin],
np.flipud(adv_field_y)[::quiver_thin, ::quiver_thin],
adv_field[0, ...][::quiver_thin, ::quiver_thin],
-1 * np.flipud(adv_field[1, ...])[::quiver_thin, ::quiver_thin],
linewidth=adv_field_lw,
color=adv_field_color,
alpha=adv_field_alpha,
)
axes.set_title(times[i][:-3])
axes.set_xticks(np.linspace(0, obs[0].shape[0], 5))
axes.set_yticks(np.linspace(0, obs[0].shape[1], 5))
axes.grid(lw=0.5, color="tab:gray", ls=":")
for tick in axes.xaxis.get_major_ticks():
tick.tick1line.set_visible(False)
tick.tick2line.set_visible(False)
tick.label1.set_visible(False)
tick.label2.set_visible(False)
for tick in axes.yaxis.get_major_ticks():
tick.tick1line.set_visible(False)
tick.tick2line.set_visible(False)
tick.label1.set_visible(False)
tick.label2.set_visible(False)
for spine in ["top", "right"]:
axes.spines[spine].set_visible(True)
if cbar is not None:
cbar.ax.yaxis.label.set_size("x-small")
# axes[0, 0].set_ylabel("Observation")
fig.savefig(
outdir
/ datetime.strptime(times[i], "%Y-%m-%d %H:%M:%S").strftime(input_file),
bbox_inches="tight",
dpi=conf.dpi,
)
axes.clear()
# build gif
with imageio.get_writer(
outdir / f"input_{date:%Y%m%d%H%M}.gif",
format="GIF",
mode="I",
duration=duration_per_frame,
) as writer:
for filename in sorted(outdir.glob("input_*.png")):
image = imageio.imread(filename)
writer.append_data(image)
# Plot target
for i in range(len(conf.leadtimes)):
obs[conf.n_input_images + i][
obs[conf.n_input_images + i] < conf.min_val
] = np.nan
cbar = plot_array(axes, obs[conf.n_input_images + i], qty="RR", colorbar=True)
axes.set_title(times[conf.n_input_images + i][:-3])
# Plot advection field
if adv_field is not None:
axes.quiver(
adv_field_x[::quiver_thin, ::quiver_thin],
np.flipud(adv_field_y)[::quiver_thin, ::quiver_thin],
adv_field[0, ...][::quiver_thin, ::quiver_thin],
-1 * np.flipud(adv_field[1, ...])[::quiver_thin, ::quiver_thin],
linewidth=adv_field_lw,
color=adv_field_color,
alpha=adv_field_alpha,
)
axes.set_xticks(np.linspace(0, obs[0].shape[0], 5))
axes.set_yticks(np.linspace(0, obs[0].shape[1], 5))
axes.grid(lw=0.5, color="tab:gray", ls=":")
for tick in axes.xaxis.get_major_ticks():
tick.tick1line.set_visible(False)
tick.tick2line.set_visible(False)
tick.label1.set_visible(False)
tick.label2.set_visible(False)
for tick in axes.yaxis.get_major_ticks():
tick.tick1line.set_visible(False)
tick.tick2line.set_visible(False)
tick.label1.set_visible(False)
tick.label2.set_visible(False)
for spine in ["top", "right"]:
axes.spines[spine].set_visible(True)
# axes.set_ylabel("Target")
if cbar is not None:
cbar.ax.yaxis.label.set_size("x-small")
fig.savefig(
outdir
/ datetime.strptime(
times[conf.n_input_images + i], "%Y-%m-%d %H:%M:%S"
).strftime(output_file),
bbox_inches="tight",
dpi=conf.dpi,
)
axes.clear()
# build gif
with imageio.get_writer(
outdir / f"target_{date:%Y%m%d%H%M}.gif",
format="GIF",
mode="I",
duration=duration_per_frame,
) as writer:
for filename in sorted(outdir.glob("target_*.png")):
image = imageio.imread(filename)
writer.append_data(image)
# Load nowcasts
nowcasts = io_tools.load_predictions(conf.nowcasts, sample, conf.leadtimes)
if isinstance(nowcasts, str):
raise ValueError(f"Some nowcast for {sample} for {nowcasts} missing!")
# Plot nowcasts
row = 2
for j, method in enumerate(conf.nowcasts.keys()):
try:
nowcasts[method] = io_tools.dBZ_list_to_rainrate(nowcasts[method])
except:
raise ValueError(f"Some nowcast for {method} missing!")
for i in range(len(conf.leadtimes)):
nan_mask = np.isnan(nowcasts[method][i])
nowcasts[method][i][nowcasts[method][i] < conf.min_val] = np.nan
cbar = plot_array(axes, nowcasts[method][i], qty="RR", colorbar=True)
axes.pcolormesh(
np.flipud(nan_mask),
cmap=colors.ListedColormap(
[
"white",
"tab:gray",
]
),
zorder=9,
rasterized=True,
vmin=0,
vmax=1,
alpha=0.5,
)
# axes.set_title(times[conf.n_input_images + i])
axes.set_title(f"{date:%Y-%m-%d %H:%M} + {conf.leadtimes[i] * 5:>3} min ")
# Plot advection field
if adv_field is not None:
axes.quiver(
adv_field_x[::quiver_thin, ::quiver_thin],
np.flipud(adv_field_y)[::quiver_thin, ::quiver_thin],
adv_field[0, ...][::quiver_thin, ::quiver_thin],
-1 * np.flipud(adv_field[1, ...])[::quiver_thin, ::quiver_thin],
linewidth=adv_field_lw,
color=adv_field_color,
alpha=adv_field_alpha,
zorder=11,
)
axes.set_xticks(np.linspace(0, obs[0].shape[0], 5))
axes.set_yticks(np.linspace(0, obs[0].shape[1], 5))
axes.grid(lw=0.5, color="tab:gray", ls=":", zorder=11)
for tick in axes.xaxis.get_major_ticks():
tick.tick1line.set_visible(False)
tick.tick2line.set_visible(False)
tick.label1.set_visible(False)
tick.label2.set_visible(False)
for tick in axes.yaxis.get_major_ticks():
tick.tick1line.set_visible(False)
tick.tick2line.set_visible(False)
tick.label1.set_visible(False)
tick.label2.set_visible(False)
for spine in ["top", "right"]:
axes.spines[spine].set_visible(True)
if cbar is not None:
cbar.ax.yaxis.label.set_size("x-small")
# axes[j + 2, 0].set_ylabel(conf.nowcasts[method]["title"])
# fig.subplots_adjust()
fig.savefig(
outdir
/ datetime.strptime(
times[conf.n_input_images + i], "%Y-%m-%d %H:%M:%S"
).strftime(nowcast_file(method)),
bbox_inches="tight",
dpi=conf.dpi,
)
axes.clear()
# build gif
with imageio.get_writer(
outdir / f"{method}_{date:%Y%m%d%H%M}.gif",
format="GIF",
mode="I",
duration=duration_per_frame,
) as writer:
for filename in sorted(outdir.glob(f"nowcast_{method}_*.png")):
image = imageio.imread(filename)
writer.append_data(image)