-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathklujax.py
477 lines (383 loc) · 14.1 KB
/
klujax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
""" klujax: a KLU solver for JAX """
# Metadata ============================================================================
__version__ = "0.3.1"
__author__ = "Floris Laporte"
__all__ = ["solve", "coo_mul_vec"]
# Imports =============================================================================
import sys
from functools import partial
import jax
import jax.extend
import jax.numpy as jnp
import numpy as np
from jax import core, lax
from jax.core import ShapedArray
from jax.interpreters import ad, batching, mlir
from jaxtyping import Array
import klujax_cpp
# Config ==============================================================================
DEBUG = False
jax.config.update("jax_enable_x64", True)
jax.config.update("jax_platform_name", "cpu")
_log = lambda s: None if not DEBUG else print(s, file=sys.stderr) # noqa: E731
# The main functions ==================================================================
@jax.jit
def solve(Ai: Array, Aj: Array, Ax: Array, b: Array) -> Array:
"""Solve for x in the sparse linear system Ax=b.
Args:
Ai: [n_nz; int32]: the row indices of the sparse matrix A
Aj: [n_nz; int32]: the column indices of the sparse matrix A
Ax: [n_lhs? x n_nz; float64|complex128]: the values of the sparse matrix A
b: [n_lhs? x n_col x n_rhs?; float64|complex128]: the target vector
Returns:
x: the result (x≈A^-1b)
"""
if any(x.dtype in COMPLEX_DTYPES for x in (Ax, b)):
result = solve_c128.bind(
Ai.astype(jnp.int32),
Aj.astype(jnp.int32),
Ax.astype(jnp.complex128),
b.astype(jnp.complex128),
)
else:
result = solve_f64.bind(
Ai.astype(jnp.int32),
Aj.astype(jnp.int32),
Ax.astype(jnp.float64),
b.astype(jnp.float64),
)
return result # type: ignore
@jax.jit
def coo_mul_vec(Ai: Array, Aj: Array, Ax: Array, x: Array) -> Array:
"""Multiply a sparse matrix with a vector: Ax=b
Args:
Ai: [n_nz; int32]: the row indices of the sparse matrix A
Aj: [n_nz; int32]: the column indices of the sparse matrix A
Ax: [n_lhs? x n_nz; float64|complex128]: the values of the sparse matrix A
x: [n_lhs? x n_col x n_rhs?; float64|complex128]: the vector that's being multiplied by A
Returns:
b: the result of the multiplication (b=Ax)
"""
if any(x.dtype in COMPLEX_DTYPES for x in (Ax, x)):
result = coo_mul_vec_c128.bind(
Ai.astype(jnp.int32),
Aj.astype(jnp.int32),
Ax.astype(jnp.complex128),
x.astype(jnp.complex128),
)
else:
result = coo_mul_vec_f64.bind(
Ai.astype(jnp.int32),
Aj.astype(jnp.int32),
Ax.astype(jnp.float64),
x.astype(jnp.float64),
)
return result # type: ignore
# Constants ===========================================================================
COMPLEX_DTYPES = (
np.complex64,
np.complex128,
# np.complex256,
jnp.complex64,
jnp.complex128,
)
# Primitives ==========================================================================
solve_f64 = core.Primitive("solve_f64")
solve_c128 = core.Primitive("solve_c128")
coo_mul_vec_f64 = core.Primitive("coo_mul_vec_f64")
coo_mul_vec_c128 = core.Primitive("coo_mul_vec_c128")
# Register XLA extensions ==============================================================
jax.extend.ffi.register_ffi_target(
"_solve_f64",
klujax_cpp.solve_f64(),
platform="cpu",
)
jax.extend.ffi.register_ffi_target(
"_coo_mul_vec_f64",
klujax_cpp.coo_mul_vec_f64(),
platform="cpu",
)
jax.extend.ffi.register_ffi_target(
"_solve_c128",
klujax_cpp.solve_c128(),
platform="cpu",
)
jax.extend.ffi.register_ffi_target(
"_coo_mul_vec_c128",
klujax_cpp.coo_mul_vec_c128(),
platform="cpu",
)
# Helper Decorators ===================================================================
def ad_register(primitive):
def decorator(fun):
ad.primitive_jvps[primitive] = fun
return fun
return decorator
def transpose_register(primitive):
def decorator(fun):
ad.primitive_transposes[primitive] = fun
return fun
return decorator
def vmap_register(primitive, operation):
def decorator(fun):
batching.primitive_batchers[primitive] = partial(fun, operation)
return fun
return decorator
# Implementations =====================================================================
@solve_f64.def_impl
def solve_f64_impl(Ai, Aj, Ax, b) -> jnp.ndarray:
Ai, Aj, Ax, b, shape = _prepare_arguments(Ai, Aj, Ax, b)
_b = b.transpose(0, 2, 1)
call = jax.extend.ffi.ffi_call(
"_solve_f64",
jax.ShapeDtypeStruct(_b.shape, _b.dtype),
vmap_method="broadcast_all",
)
result = call( # type: ignore
Ai,
Aj,
Ax,
_b,
)
return result.transpose(0, 2, 1).reshape(*shape) # type: ignore
@solve_c128.def_impl
def solve_c128_impl(Ai, Aj, Ax, b) -> jnp.ndarray:
Ai, Aj, Ax, b, shape = _prepare_arguments(Ai, Aj, Ax, b)
_b = b.transpose(0, 2, 1)
call = jax.extend.ffi.ffi_call(
"_solve_c128",
jax.ShapeDtypeStruct(_b.shape, _b.dtype),
vmap_method="broadcast_all",
)
result = call( # type: ignore
Ai,
Aj,
Ax,
_b,
)
return result.transpose(0, 2, 1).reshape(*shape) # type: ignore
@coo_mul_vec_f64.def_impl
def coo_mul_vec_f64_impl(Ai, Aj, Ax, x) -> jnp.ndarray:
Ai, Aj, Ax, x, shape = _prepare_arguments(Ai, Aj, Ax, x)
_x = x.transpose(0, 2, 1)
call = jax.extend.ffi.ffi_call(
"_coo_mul_vec_f64",
jax.ShapeDtypeStruct(_x.shape, _x.dtype),
vmap_method="broadcast_all",
)
result = call( # type: ignore
Ai,
Aj,
Ax,
_x,
)
return result.transpose(0, 2, 1).reshape(*shape) # type: ignore
@coo_mul_vec_c128.def_impl
def coo_mul_vec_c128_impl(Ai, Aj, Ax, x) -> jnp.ndarray:
Ai, Aj, Ax, x, shape = _prepare_arguments(Ai, Aj, Ax, x)
_x = x.transpose(0, 2, 1)
call = jax.extend.ffi.ffi_call(
"_coo_mul_vec_c128",
jax.ShapeDtypeStruct(_x.shape, _x.dtype),
vmap_method="broadcast_all",
)
result = call( # type: ignore
Ai,
Aj,
Ax,
_x,
)
return result.transpose(0, 2, 1).reshape(*shape) # type: ignore
def _prepare_arguments(Ai, Aj, Ax, x):
Ai = jnp.asarray(Ai)
Aj = jnp.asarray(Aj)
Ax = jnp.asarray(Ax)
x = jnp.asarray(x)
shape = x.shape
_log(f"{Ai.dtype=}")
_log(f"{Aj.dtype=}")
_log(f"{Ai.max()=}")
_log(f"{Aj.max()=}")
_log(f"{Ax.dtype=}")
_log(f"{x.dtype=}")
_log(f"{Ax.shape=}")
_log(f"{x.shape=}")
prefer_x_rhs_over_lhs = (Ax.ndim < 2) or (Ax.shape[0] != x.shape[0])
_log(f"{prefer_x_rhs_over_lhs=}")
if Ax.ndim > 2:
raise ValueError(
f"Ax should be at most 2D with shape: (n_lhs, n_nz). Got: {Ax.shape}. "
"Note: jax.vmap is supported. Use it if needed."
)
else:
Ax = jnp.atleast_2d(Ax)
a_n_lhs, n_nz = Ax.shape
Ax = Ax.reshape(-1, n_nz)
_log(f"{Ax.shape=}")
_log(f"{n_nz=}")
if x.ndim == 0:
x = x[None, None, None]
x_n_lhs, n_col, n_rhs = x.shape
shape_includes_lhs = False
elif x.ndim == 1:
x = x[None, :, None]
x_n_lhs, n_col, n_rhs = x.shape
shape_includes_lhs = False
elif x.ndim == 2 and prefer_x_rhs_over_lhs:
x = x[None, :, :]
x_n_lhs, n_col, n_rhs = x.shape
shape_includes_lhs = False
elif x.ndim == 2 and not prefer_x_rhs_over_lhs:
x = x[:, :, None]
x_n_lhs, n_col, n_rhs = x.shape
shape_includes_lhs = True
elif x.ndim == 3:
x_n_lhs, n_col, n_rhs = x.shape
shape_includes_lhs = True
else:
raise ValueError(
f"x should be at most 3D with shape: (n_lhs, n_col, n_rhs). Got: {x.shape}. "
"Note: jax.vmap is supported. Use it if needed."
)
_log(f"{x.shape=}")
_log(f"{n_col=}")
_log(f"{n_rhs=}")
if a_n_lhs == x_n_lhs:
n_lhs = a_n_lhs
elif a_n_lhs > x_n_lhs:
if not x_n_lhs == 1:
raise ValueError(
f"Cannot broadcast n_lhs for x into n_lhs for Ax. "
f"Got: n_lhs[x]={x_n_lhs}; n_lhs[Ax]={a_n_lhs}."
)
n_lhs = a_n_lhs
if shape_includes_lhs:
shape = (n_lhs,) + shape[1:]
else:
shape = (n_lhs,) + shape
else:
if not a_n_lhs == 1:
raise ValueError(
f"Cannot broadcast n_lhs for Ax into n_lhs for x. "
f"Got: n_lhs[x]={x_n_lhs}; n_lhs[Ax]={a_n_lhs}."
)
n_lhs = x_n_lhs
_log(f"{n_lhs=}")
Ax = jnp.broadcast_to(Ax, (n_lhs, n_nz))
x = jnp.broadcast_to(x, (n_lhs, n_col, n_rhs))
_log(f"{Ax.shape=}")
_log(f"{x.shape=}")
# We retain the old shape of b so the result of the primitive can be
# reshaped to the expected shape.
return Ai, Aj, Ax, x, shape
# Lowerings ===========================================================================
solve_f64_lowering = mlir.lower_fun(solve_f64_impl, multiple_results=False)
mlir.register_lowering(solve_f64, solve_f64_lowering)
solve_c128_lowering = mlir.lower_fun(solve_c128_impl, multiple_results=False)
mlir.register_lowering(solve_c128, solve_c128_lowering)
coo_mul_vec_f64_lowering = mlir.lower_fun(coo_mul_vec_f64_impl, multiple_results=False)
mlir.register_lowering(coo_mul_vec_f64, coo_mul_vec_f64_lowering)
coo_mul_vec_c128_lowering = mlir.lower_fun(
coo_mul_vec_c128_impl, multiple_results=False
)
mlir.register_lowering(coo_mul_vec_c128, coo_mul_vec_c128_lowering)
# Abstract Evaluations ================================================================
@solve_f64.def_abstract_eval
@solve_c128.def_abstract_eval
@coo_mul_vec_f64.def_abstract_eval
@coo_mul_vec_c128.def_abstract_eval
def coo_vec_operation_abstract_eval(Ai, Aj, Ax, b):
return ShapedArray(b.shape, b.dtype)
# Forward Gradients ===================================================================
@ad_register(solve_f64)
@ad_register(solve_c128)
def solve_value_and_jvp(arg_values, arg_tangents):
Ai, Aj, Ax, b = arg_values
dAi, dAj, dAx, db = arg_tangents
dAx = dAx if not isinstance(dAx, ad.Zero) else lax.zeros_like_array(Ax)
dAi = dAi if not isinstance(dAi, ad.Zero) else lax.zeros_like_array(Ai)
dAj = dAj if not isinstance(dAj, ad.Zero) else lax.zeros_like_array(Aj)
db = db if not isinstance(db, ad.Zero) else lax.zeros_like_array(b)
x = solve(Ai, Aj, Ax, b)
dA_x = coo_mul_vec(Ai, Aj, dAx, x)
invA_dA_x = solve(Ai, Aj, Ax, dA_x)
invA_db = solve(Ai, Aj, Ax, db)
return x, -invA_dA_x + invA_db
@ad_register(coo_mul_vec_f64)
@ad_register(coo_mul_vec_c128)
def coo_mul_vec_value_and_jvp(arg_values, arg_tangents):
Ai, Aj, Ax, b = arg_values
dAi, dAj, dAx, db = arg_tangents
dAx = dAx if not isinstance(dAx, ad.Zero) else lax.zeros_like_array(Ax)
dAi = dAi if not isinstance(dAi, ad.Zero) else lax.zeros_like_array(Ai)
dAj = dAj if not isinstance(dAj, ad.Zero) else lax.zeros_like_array(Aj)
db = db if not isinstance(db, ad.Zero) else lax.zeros_like_array(b)
x = coo_mul_vec(Ai, Aj, Ax, b)
dA_b = coo_mul_vec(Ai, Aj, dAx, b)
A_db = coo_mul_vec(Ai, Aj, Ax, db)
return x, dA_b + A_db
# Backward Gradients through Transposition ============================================
@transpose_register(solve_f64)
@transpose_register(solve_c128)
def solve_transpose(ct, Ai, Aj, Ax, b):
assert not ad.is_undefined_primal(Ai)
assert not ad.is_undefined_primal(Aj)
assert not ad.is_undefined_primal(Ax)
assert not ad.is_undefined_primal(Ax)
assert ad.is_undefined_primal(b)
return None, None, None, solve(Aj, Ai, Ax.conj(), ct) # = inv(A).H@ct [= ct@inv(A)]
@transpose_register(coo_mul_vec_f64)
@transpose_register(coo_mul_vec_c128)
def coo_mul_vec_transpose(ct, Ai, Aj, Ax, b):
assert not ad.is_undefined_primal(Ai)
assert not ad.is_undefined_primal(Aj)
assert ad.is_undefined_primal(Ax) != ad.is_undefined_primal(b) # xor
if ad.is_undefined_primal(b):
return None, None, None, coo_mul_vec(Aj, Ai, Ax.conj(), ct) # = A.T@ct [= ct@A]
else:
dA = ct[Ai] * b[Aj]
dA = dA.reshape(dA.shape[0], -1).sum(-1) # not sure about this...
return None, None, dA, None
# Vectorization (vmap) ================================================================
@vmap_register(solve_f64, solve)
@vmap_register(solve_c128, solve)
@vmap_register(coo_mul_vec_f64, coo_mul_vec)
@vmap_register(coo_mul_vec_c128, coo_mul_vec)
def coo_vec_operation_vmap(operation, vector_arg_values, batch_axes):
aAi, aAj, aAx, ab = batch_axes
Ai, Aj, Ax, b = vector_arg_values
assert aAi is None, "Ai cannot be vectorized."
assert aAj is None, "Aj cannot be vectorized."
if aAx is not None and ab is not None:
assert isinstance(aAx, int) and isinstance(ab, int)
Ax = jnp.moveaxis(Ax, aAx, 0) # treat as lhs
b = jnp.moveaxis(b, ab, 0) # treat as lhs
result = operation(Ai, Aj, Ax, b)
return result, 0
if ab is None:
assert isinstance(aAx, int)
Ax = jnp.moveaxis(Ax, aAx, 0) # treat as lhs
b = jnp.broadcast_to(b[None], (Ax.shape[0], *b.shape))
result = operation(Ai, Aj, Ax, b)
return result, 0
if aAx is None:
assert isinstance(ab, int)
_log(f"vmap: {b.shape=}")
b = jnp.moveaxis(b, ab, -1) # treat as rhs
_log(f"vmap: {b.shape=}")
shape = b.shape
if b.ndim == 0:
b = b[None, None, None]
elif b.ndim == 1:
b = b[None, None, :]
elif b.ndim == 2:
b = b[None, :, :]
elif b.ndim == 3:
b = b[:, :, :]
b = b.reshape(b.shape[0], b.shape[1], -1)
_log(f"vmap: {b.shape=}")
# b is now guaranteed to have shape (n_lhs, n_col, n_rhs)
result = operation(Ai, Aj, Ax, b)
result = result.reshape(*shape)
return result, -1
raise ValueError("invalid arguments for vmap")