-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerateStep.m
157 lines (131 loc) · 4.18 KB
/
generateStep.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
function [ P_Fi, P_SR, P_SL, xi_Fi, lambda] = generateStep( r, alpha,...
T, nb_points, swing_foot,T_leg_R,T_leg_L,max_height,mid_height)
%GENERATE_STEP generate a trajectory for the foot over one step
% r : distance from origine pose to goal
% alpha : angle (polar coordinates)
% psi : stearing angle
% t : time of the step
% foot : value for the foot (1 for right, 2 for left)
% P_F : position of the center of the feet
% P_S : position of the four sensors
% eps_F : linear and angular velocities
%% Global variables
global dt;
global lambda_coeff;
%% Parameters for the trajectory
time = T/10;
step = nb_points/10;
r=r*2;
ds=fix(.05*nb_points);%half of the points of step in double support to consider in beggining and end
ss=nb_points-2*ds;%points of step in single support
%% Generate the trajectory
% initialisation
P_Fi = zeros(3,2,nb_points);
P_SR = zeros(3,4,nb_points);
P_SL = zeros(3,4,nb_points);
xi_Fi = zeros(6,2,nb_points);
%% Initialise the position
for i = 1:nb_points
P_Fi(:,1,i) = T_leg_R(1:3,4);
P_Fi(:,2,i) = T_leg_L(1:3,4);
end
% time vector*
t = linspace(dt,T,nb_points);
%% SS phase
%% X and y trajectory
%linear trajectory for feet
px=linspace(r*cos(alpha)/ss,r*cos(alpha),ss);
py=linspace(r*sin(alpha)/ss,r*sin(alpha),ss);
% x=[1 ss/16 ss*15/16 ss];
% xx=[0 r*cos(alpha)/ss (r*cos(alpha)-r*cos(alpha)/ss) r*cos(alpha)];
% cs = spline(x, xx );
% p=1:ss;
% px=ppval(cs,p);
% plot(x,xx,'o',p,ppval(cs,p),'-');
% %% x trajectory
% prev=0;
% x=linspace(pi/(ss+1),pi,ss+1);
% px=zeros(nb_points,1);
% for i=ds+1:nb_points-ds
% px(i)=integrate(sin(x(i-ds)),prev);
% prev=px(i);
% end
%
% coef=r*cos(alpha)/px(nb_points-ds);
% px=coef*px;
%
%
% %% y trajectory
% prev=0;
% x=linspace(pi/(ss+1),pi,ss+1);
% py=zeros(nb_points,1);
% for i=ds+1:nb_points-ds
% py(i)=integrate(sin(x(i-ds)),prev);
% prev=py(i);
% end
%
% coef=r*sin(alpha)/py(nb_points-ds);
% py=coef*py;
%% Z trajectory
prev=0;
x=linspace(2*pi/(ss+1),2*pi,ss+1);
pz=zeros(nb_points,1);
for i=ds+1:nb_points-ds
pz(i)=integrate(sin(x(i-ds)),prev);
prev=pz(i);
end
coef=max_height/max(pz);
pz=coef*pz;
P_Fi(1,swing_foot,ds+1:nb_points-ds)=P_Fi(1,swing_foot,1)+px';
P_Fi(2,swing_foot,ds+1:nb_points-ds)=P_Fi(2,swing_foot,1)+py';
P_Fi(3,swing_foot,:)=pz';
%%changle last values of x and y
for i=nb_points+1-ds:nb_points
P_Fi(1,swing_foot,i)=P_Fi(1,swing_foot,nb_points-ds);
P_Fi(2,swing_foot,i)=P_Fi(2,swing_foot,nb_points-ds);
end
%plot(squeeze(P_Fi(1,swing_foot,:))',squeeze(P_Fi(3,swing_foot,:))'); hold on
% figure,
% plot(t,squeeze(P_Fi(3,swing_foot,:))'); hold on
% plot(t,squeeze(P_Fi(1,swing_foot,:))'); hold on
lambda = zeros(8,nb_points); % 4 contacts on each feet
if swing_foot == 1
lambda(5:8,:) = ones(4,nb_points)*lambda_coeff;
% % al contacts have force in double support
lambda(1:4,1:ds) = ones(4,ds)*lambda_coeff;
lambda(1:4,nb_points+1-ds:nb_points) = ones(4,ds)*lambda_coeff;
else
lambda(1:4,:) = ones(4,nb_points)*lambda_coeff;
% % al contacts have force in double support
lambda(5:8,1:ds) = ones(4,ds)*lambda_coeff;
lambda(5:8,nb_points+1-ds:nb_points) = ones(4,ds)*lambda_coeff;
end
% %increase load to the back of the feet
for l=1:nb_points
lambda(:,l)=lambda(:,l).*[1;1;1.5;1.5;1;1;1.5;1.5];
end
% %
%% Generate the velocity of the feet
% use the central difference to calculate the velocity
for i = 2:(nb_points-1)
xi_Fi(1:3,:,i) = (P_Fi(:,:,i+1) - P_Fi(:,:,i-1))/(2*dt);
end
% figure,
% plot(squeeze( xi_Fi(1,swing_foot,:)),'r'); hold on;
% plot(squeeze( xi_Fi(2,swing_foot,:))); hold on;
% plot(squeeze( xi_Fi(3,swing_foot,:)),'g'); hold on;
% legend('xi_{Fx}','xi_{Fy}','xi_{Fz}',3);
% xlabel('1 step');
% ylabel('Linear Velocity, m/s')
% get the position of the foot sensors
for i = 1:nb_points
% create the transformation matrix with the position of the foot
T_R = makehgtform('translate',P_Fi(:,1,i));
T_L = makehgtform('translate',P_Fi(:,2,i));
temp_ps = get_sensors_position(T_R, T_L);
P_SR(:,:,i) = temp_ps(:,1,:);
P_SL(:,:,i) = temp_ps(:,2,:);
end
%% Creation of the vertices
vertix = [P_SR, P_SL];
end