-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathbcm2835.c
1102 lines (932 loc) · 31.1 KB
/
bcm2835.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// bcm2835.c
// bcm2835.c
// C and C++ support for Broadcom BCM 2835 as used in Raspberry Pi
// http://elinux.org/RPi_Low-level_peripherals
// http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
//
// Author: Mike McCauley
// Copyright (C) 2011-2013 Mike McCauley
// $Id: bcm2835.c,v 1.8 2013/02/15 22:06:09 mikem Exp mikem $
//
// 03/17/2013 : Charles-Henri Hallard (http://hallard.me)
// Modified Adding some fonctionnalities
// Added millis() function
// Added option to use custom Chip Select Pin PI GPIO instead of only CE0 CE1
// Done a hack to use CE1 by software as custom CS pin because HW does not work
// Added function to determine PI revision board
// Added function to set SPI speed (instead of divider for easier look in code)
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#include "./bcm2835.h"
// This define enables a little test program (by default a blinking output on pin RPI_GPIO_PIN_11)
// You can do some safe, non-destructive testing on any platform with:
// gcc bcm2835.c -D BCM2835_TEST
// ./a.out
//#define BCM2835_TEST
// Pointers to the hardware register bases
volatile uint32_t *bcm2835_gpio = MAP_FAILED;
volatile uint32_t *bcm2835_pwm = MAP_FAILED;
volatile uint32_t *bcm2835_clk = MAP_FAILED;
volatile uint32_t *bcm2835_pads = MAP_FAILED;
volatile uint32_t *bcm2835_spi0 = MAP_FAILED;
volatile uint32_t *bcm2835_bsc0 = MAP_FAILED;
volatile uint32_t *bcm2835_bsc1 = MAP_FAILED;
volatile uint32_t *bcm2835_st = MAP_FAILED;
// This variable allows us to test on hardware other than RPi.
// It prevents access to the kernel memory, and does not do any peripheral access
// Instead it prints out what it _would_ do if debug were 0
static uint8_t debug = 0;
// I2C The time needed to transmit one byte. In microseconds.
static int i2c_byte_wait_us = 0;
// SPI Custom Chip Select Pin
static int spi_custom_cs = 0;
// Time for millis function
static unsigned long long epoch ;
//
// Low level register access functions
//
void bcm2835_set_debug(uint8_t d)
{
debug = d;
}
// Get raspberry PI model version
int bcm2835_get_pi_version( void )
{
int rev = 0;
char buff[512];
char * p;
char * pend;
FILE * fd ;
// do some clean up
memset(buff,0,sizeof(buff));
fd = fopen("/proc/cpuinfo","r");
// Opened successfully
if( fd )
{
//printf("File opened successfully through fopen()\n");
// parse each line until we the end or we find the good one
while( fgets(buff, sizeof(buff), fd) != NULL && rev ==0 )
{
// search
if( (strstr(buff, "Revision" )) != NULL )
{
// point to the separator ":" format is has follow
// Revision : 000f
if ( (p = strtok( buff, ":")) != NULL )
{
// Ok get value
if ( (p = strtok( NULL, ":")) != NULL )
{
// Revision Version is in hex format so put 0x before the number
*p = 'x';
*--p = '0';
// convert to number
rev = strtol(p, &pend, 16);
//printf("rev=%d 0x%04x\n", rev, rev);
// not Okay ?
if ( !*pend )
{
rev= 0;
}
else
{
// Revision 1 or 2 ?
rev = (rev < 4 ) ? 1 : 2 ;
}
}
}
}
}
// Close the file.
if(fd)
{
fclose(fd);
}
}
return rev;
}
// safe read from peripheral
uint32_t bcm2835_peri_read(volatile uint32_t* paddr)
{
uint32_t ret ;
uint32_t dummy = 0 ;
if (debug)
{
printf("bcm2835_peri_read paddr %08X\n", (unsigned) paddr);
return dummy;
}
else
{
// Make sure we dont return the _last_ read which might get lost
// if subsequent code changes to a different peripheral
ret = *paddr;
dummy = *paddr;
return ret;
}
}
// read from peripheral without the read barrier
uint32_t bcm2835_peri_read_nb(volatile uint32_t* paddr)
{
if (debug)
{
printf("bcm2835_peri_read_nb paddr %08X\n", (unsigned) paddr);
return 0;
}
else
{
return *paddr;
}
}
// safe write to peripheral
void bcm2835_peri_write(volatile uint32_t* paddr, uint32_t value)
{
if (debug)
{
printf("bcm2835_peri_write paddr %08X, value %08X\n", (unsigned) paddr, value);
}
else
{
// Make sure we don't rely on the first write, which may get
// lost if the previous access was to a different peripheral.
*paddr = value;
*paddr = value;
}
}
// write to peripheral without the write barrier
void bcm2835_peri_write_nb(volatile uint32_t* paddr, uint32_t value)
{
if (debug)
{
printf("bcm2835_peri_write_nb paddr %08X, value %08X\n",
(unsigned) paddr, value);
}
else
{
*paddr = value;
}
}
// Set/clear only the bits in value covered by the mask
void bcm2835_peri_set_bits(volatile uint32_t* paddr, uint32_t value, uint32_t mask)
{
uint32_t v = bcm2835_peri_read(paddr);
v = (v & ~mask) | (value & mask);
bcm2835_peri_write(paddr, v);
}
//
// Low level convenience functions
//
// Function select
// pin is a BCM2835 GPIO pin number NOT RPi pin number
// There are 6 control registers, each control the functions of a block
// of 10 pins.
// Each control register has 10 sets of 3 bits per GPIO pin:
//
// 000 = GPIO Pin X is an input
// 001 = GPIO Pin X is an output
// 100 = GPIO Pin X takes alternate function 0
// 101 = GPIO Pin X takes alternate function 1
// 110 = GPIO Pin X takes alternate function 2
// 111 = GPIO Pin X takes alternate function 3
// 011 = GPIO Pin X takes alternate function 4
// 010 = GPIO Pin X takes alternate function 5
//
// So the 3 bits for port X are:
// X / 10 + ((X % 10) * 3)
void bcm2835_gpio_fsel(uint8_t pin, uint8_t mode)
{
// Function selects are 10 pins per 32 bit word, 3 bits per pin
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPFSEL0/4 + (pin/10);
uint8_t shift = (pin % 10) * 3;
uint32_t mask = BCM2835_GPIO_FSEL_MASK << shift;
uint32_t value = mode << shift;
bcm2835_peri_set_bits(paddr, value, mask);
}
// Set output pin
void bcm2835_gpio_set(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPSET0/4 + pin/32;
uint8_t shift = pin % 32;
bcm2835_peri_write(paddr, 1 << shift);
}
// Clear output pin
void bcm2835_gpio_clr(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPCLR0/4 + pin/32;
uint8_t shift = pin % 32;
bcm2835_peri_write(paddr, 1 << shift);
}
// Set all output pins in the mask
void bcm2835_gpio_set_multi(uint32_t mask)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPSET0/4;
bcm2835_peri_write(paddr, mask);
}
// Clear all output pins in the mask
void bcm2835_gpio_clr_multi(uint32_t mask)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPCLR0/4;
bcm2835_peri_write(paddr, mask);
}
// Read input pin
uint8_t bcm2835_gpio_lev(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPLEV0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = bcm2835_peri_read(paddr);
return (value & (1 << shift)) ? HIGH : LOW;
}
// See if an event detection bit is set
// Sigh cant support interrupts yet
uint8_t bcm2835_gpio_eds(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPEDS0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = bcm2835_peri_read(paddr);
return (value & (1 << shift)) ? HIGH : LOW;
}
// Write a 1 to clear the bit in EDS
void bcm2835_gpio_set_eds(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPEDS0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_write(paddr, value);
}
// Rising edge detect enable
void bcm2835_gpio_ren(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPREN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_ren(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPREN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
// Falling edge detect enable
void bcm2835_gpio_fen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPFEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_fen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPFEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
// High detect enable
void bcm2835_gpio_hen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPHEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_hen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPHEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
// Low detect enable
void bcm2835_gpio_len(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPLEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_len(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPLEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
// Async rising edge detect enable
void bcm2835_gpio_aren(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPAREN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_aren(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPAREN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
// Async falling edge detect enable
void bcm2835_gpio_afen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPAFEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, value, value);
}
void bcm2835_gpio_clr_afen(uint8_t pin)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPAFEN0/4 + pin/32;
uint8_t shift = pin % 32;
uint32_t value = 1 << shift;
bcm2835_peri_set_bits(paddr, 0, value);
}
// Set pullup/down
void bcm2835_gpio_pud(uint8_t pud)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPPUD/4;
bcm2835_peri_write(paddr, pud);
}
// Pullup/down clock
// Clocks the value of pud into the GPIO pin
void bcm2835_gpio_pudclk(uint8_t pin, uint8_t on)
{
volatile uint32_t* paddr = bcm2835_gpio + BCM2835_GPPUDCLK0/4 + pin/32;
uint8_t shift = pin % 32;
bcm2835_peri_write(paddr, (on ? 1 : 0) << shift);
}
// Read GPIO pad behaviour for groups of GPIOs
uint32_t bcm2835_gpio_pad(uint8_t group)
{
volatile uint32_t* paddr = bcm2835_pads + BCM2835_PADS_GPIO_0_27/4 + group*2;
return bcm2835_peri_read(paddr);
}
// Set GPIO pad behaviour for groups of GPIOs
// powerup value for al pads is
// BCM2835_PAD_SLEW_RATE_UNLIMITED | BCM2835_PAD_HYSTERESIS_ENABLED | BCM2835_PAD_DRIVE_8mA
void bcm2835_gpio_set_pad(uint8_t group, uint32_t control)
{
volatile uint32_t* paddr = bcm2835_pads + BCM2835_PADS_GPIO_0_27/4 + group*2;
bcm2835_peri_write(paddr, control);
}
// Some convenient arduino-like functions
// milliseconds
void bcm2835_delay(unsigned int millis)
{
struct timespec sleeper;
sleeper.tv_sec = (time_t)(millis / 1000);
sleeper.tv_nsec = (long)(millis % 1000) * 1000000;
nanosleep(&sleeper, NULL);
}
// microseconds
void bcm2835_delayMicroseconds(uint64_t micros)
{
struct timespec t1;
uint64_t start;
// Calling nanosleep() takes at least 100-200 us, so use it for
// long waits and use a busy wait on the System Timer for the rest.
start = bcm2835_st_read();
if (micros > 450)
{
t1.tv_sec = 0;
t1.tv_nsec = 1000 * (long)(micros - 200);
nanosleep(&t1, NULL);
}
bcm2835_st_delay(start, micros);
}
// This function is added in order to simulate arduino millis() function
unsigned int bcm2835_millis(void)
{
struct timeval now;
unsigned long long ms;
gettimeofday(&now, NULL);
ms = (now.tv_sec * 1000000 + now.tv_usec) / 1000 ;
return ((uint32_t) (ms - epoch ));
}
//
// Higher level convenience functions
//
// Set the state of an output
void bcm2835_gpio_write(uint8_t pin, uint8_t on)
{
if (on)
bcm2835_gpio_set(pin);
else
bcm2835_gpio_clr(pin);
}
// Set the state of a all 32 outputs in the mask to on or off
void bcm2835_gpio_write_multi(uint32_t mask, uint8_t on)
{
if (on)
bcm2835_gpio_set_multi(mask);
else
bcm2835_gpio_clr_multi(mask);
}
// Set the state of a all 32 outputs in the mask to the values in value
void bcm2835_gpio_write_mask(uint32_t value, uint32_t mask)
{
bcm2835_gpio_set_multi(value & mask);
bcm2835_gpio_clr_multi((~value) & mask);
}
// Set the pullup/down resistor for a pin
//
// The GPIO Pull-up/down Clock Registers control the actuation of internal pull-downs on
// the respective GPIO pins. These registers must be used in conjunction with the GPPUD
// register to effect GPIO Pull-up/down changes. The following sequence of events is
// required:
// 1. Write to GPPUD to set the required control signal (i.e. Pull-up or Pull-Down or neither
// to remove the current Pull-up/down)
// 2. Wait 150 cycles ? this provides the required set-up time for the control signal
// 3. Write to GPPUDCLK0/1 to clock the control signal into the GPIO pads you wish to
// modify ? NOTE only the pads which receive a clock will be modified, all others will
// retain their previous state.
// 4. Wait 150 cycles ? this provides the required hold time for the control signal
// 5. Write to GPPUD to remove the control signal
// 6. Write to GPPUDCLK0/1 to remove the clock
//
// RPi has P1-03 and P1-05 with 1k8 pullup resistor
void bcm2835_gpio_set_pud(uint8_t pin, uint8_t pud)
{
bcm2835_gpio_pud(pud);
delayMicroseconds(10);
bcm2835_gpio_pudclk(pin, 1);
delayMicroseconds(10);
bcm2835_gpio_pud(BCM2835_GPIO_PUD_OFF);
bcm2835_gpio_pudclk(pin, 0);
}
void bcm2835_spi_begin(uint8_t cs)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
// Set the SPI0 pins to the Alt 0 function to enable SPI0 access on them
// except if we need custom Chip Select Pin
// printf("bcm2835_spi_begin -> spi_custom_cs = %d \n",cs );
// Do we need custom chip select control or
// drive CE1 manually (because CE1 does not work with hardware)
if ( cs > BCM2835_SPI_CS_NONE || cs == BCM2835_SPI_CS1 )
{
// indicate we will use a custom GPIO port
spi_custom_cs = cs ;
// ok hard CE1 not working, drive it manually
if (cs == BCM2835_SPI_CS1 )
{
// Dirty Hack CE1 in now custom Chip Select GPIO 26
// the real CE1 pin
spi_custom_cs = RPI_GPIO_P1_26 ;
bcm2835_gpio_fsel(spi_custom_cs, BCM2835_GPIO_FSEL_OUTP);
bcm2835_gpio_write(spi_custom_cs, HIGH);
}
// Mask in we use custom CS (not sure it has a real effect)
bcm2835_peri_set_bits(paddr, BCM2835_SPI_CS_NONE, BCM2835_SPI0_CS_CS);
}
// Ok hardware driving of chip select
else
{
// Just in case
spi_custom_cs = 0 ;
// Mask in the CS bits of CS
bcm2835_peri_set_bits(paddr, cs, BCM2835_SPI0_CS_CS);
}
// Now we can drive the I/O as asked
if (spi_custom_cs == 0)
{
// Not custom CS, so hardware driven
bcm2835_gpio_fsel(RPI_GPIO_P1_24, BCM2835_GPIO_FSEL_ALT0); // CE0
bcm2835_gpio_fsel(RPI_GPIO_P1_26, BCM2835_GPIO_FSEL_ALT0); // CE1
}
else
{
// so set custom CS as output, High level by default
bcm2835_gpio_fsel(spi_custom_cs, BCM2835_GPIO_FSEL_OUTP); // Custom GPIO
bcm2835_gpio_write(spi_custom_cs, HIGH);
}
// Classic pin, hardware driven
bcm2835_gpio_fsel(RPI_GPIO_P1_21, BCM2835_GPIO_FSEL_ALT0); // MISO
bcm2835_gpio_fsel(RPI_GPIO_P1_19, BCM2835_GPIO_FSEL_ALT0); // MOSI
bcm2835_gpio_fsel(RPI_GPIO_P1_23, BCM2835_GPIO_FSEL_ALT0); // CLK
// Set the SPI CS register to the some sensible defaults
bcm2835_peri_write(paddr, 0); // All 0s
// Clear TX and RX fifos
bcm2835_peri_write_nb(paddr, BCM2835_SPI0_CS_CLEAR);
}
void bcm2835_spi_end(void)
{
// Set all the SPI0 pins back to input
if (spi_custom_cs == 0)
{
bcm2835_gpio_fsel(RPI_GPIO_P1_26, BCM2835_GPIO_FSEL_INPT); // CE1
bcm2835_gpio_fsel(RPI_GPIO_P1_24, BCM2835_GPIO_FSEL_INPT); // CE0
}
else
{
bcm2835_gpio_fsel(spi_custom_cs, BCM2835_GPIO_FSEL_INPT); // Custom GPIO
}
bcm2835_gpio_fsel(RPI_GPIO_P1_21, BCM2835_GPIO_FSEL_INPT); // MISO
bcm2835_gpio_fsel(RPI_GPIO_P1_19, BCM2835_GPIO_FSEL_INPT); // MOSI
bcm2835_gpio_fsel(RPI_GPIO_P1_23, BCM2835_GPIO_FSEL_INPT); // CLK
}
// Drive Custom chip select pin
void bcm2835_spi_setChipSelect(uint8_t level)
{
// Do this only if we are using custom ChipSelect I/O
if ( spi_custom_cs > BCM2835_SPI_CS_NONE )
bcm2835_gpio_write(spi_custom_cs, level);
}
void bcm2835_spi_setBitOrder(uint8_t order)
{
// BCM2835_SPI_BIT_ORDER_MSBFIRST is the only one suported by SPI0
}
// defaults to 0, which means a divider of 65536.
// The divisor must be a power of 2. Odd numbers
// rounded down. The maximum SPI clock rate is
// of the APB clock
void bcm2835_spi_setClockDivider(uint16_t divider)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CLK/4;
bcm2835_peri_write(paddr, divider);
}
void bcm2835_spi_setClockSpeed(uint16_t speed)
{
bcm2835_spi_setClockDivider( speed);
}
void bcm2835_spi_setDataMode(uint8_t mode)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
// Mask in the CPO and CPHA bits of CS
bcm2835_peri_set_bits(paddr, mode << 2, BCM2835_SPI0_CS_CPOL | BCM2835_SPI0_CS_CPHA);
}
// Writes (and reads) a single byte to SPI
uint8_t bcm2835_spi_transfer(uint8_t value)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
volatile uint32_t* fifo = bcm2835_spi0 + BCM2835_SPI0_FIFO/4;
// Custom chip select LOW
bcm2835_spi_setChipSelect(LOW);
// This is Polled transfer as per section 10.6.1
// BUG ALERT: what happens if we get interupted in this section, and someone else
// accesses a different peripheral?
// Clear TX and RX fifos
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_CLEAR, BCM2835_SPI0_CS_CLEAR);
// Set TA = 1
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_TA, BCM2835_SPI0_CS_TA);
// Maybe wait for TXD
while (!(bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_TXD))
delayMicroseconds(10);
// Write to FIFO, no barrier
bcm2835_peri_write_nb(fifo, value);
// Wait for DONE to be set
while (!(bcm2835_peri_read_nb(paddr) & BCM2835_SPI0_CS_DONE))
delayMicroseconds(10);
// Read any byte that was sent back by the slave while we sere sending to it
uint32_t ret = bcm2835_peri_read_nb(fifo);
// Set TA = 0, and also set the barrier
bcm2835_peri_set_bits(paddr, 0, BCM2835_SPI0_CS_TA);
// Custom chip select HIGH
bcm2835_spi_setChipSelect(HIGH);
return ret;
}
// Writes (and reads) an number of bytes to SPI
void bcm2835_spi_transfernb(char* tbuf, char* rbuf, uint32_t len)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
volatile uint32_t* fifo = bcm2835_spi0 + BCM2835_SPI0_FIFO/4;
// Custom chip select LOW
bcm2835_spi_setChipSelect(LOW);
// This is Polled transfer as per section 10.6.1
// BUG ALERT: what happens if we get interupted in this section, and someone else
// accesses a different peripheral?
// Clear TX and RX fifos
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_CLEAR, BCM2835_SPI0_CS_CLEAR);
// Set TA = 1
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_TA, BCM2835_SPI0_CS_TA);
uint32_t i;
for (i = 0; i < len; i++)
{
// Maybe wait for TXD
while (!(bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_TXD))
delayMicroseconds(10);
// Write to FIFO, no barrier
bcm2835_peri_write_nb(fifo, tbuf[i]);
// Wait for RXD
while (!(bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_RXD))
delayMicroseconds(10);
// then read the data byte
rbuf[i] = bcm2835_peri_read_nb(fifo);
}
// Wait for DONE to be set
while (!(bcm2835_peri_read_nb(paddr) & BCM2835_SPI0_CS_DONE))
delayMicroseconds(10);
// Set TA = 0, and also set the barrier
bcm2835_peri_set_bits(paddr, 0, BCM2835_SPI0_CS_TA);
// Custom chip select HIGH
bcm2835_spi_setChipSelect(HIGH);
}
// Writes an number of bytes to SPI
void bcm2835_spi_writenb(char* tbuf, uint32_t len)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
volatile uint32_t* fifo = bcm2835_spi0 + BCM2835_SPI0_FIFO/4;
// Custom chip select LOW
bcm2835_spi_setChipSelect(LOW);
// This is Polled transfer as per section 10.6.1
// BUG ALERT: what happens if we get interupted in this section, and someone else
// accesses a different peripheral?
// Clear TX and RX fifos
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_CLEAR, BCM2835_SPI0_CS_CLEAR);
// Set TA = 1
bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_TA, BCM2835_SPI0_CS_TA);
uint32_t i;
for (i = 0; i < len; i++)
{
// Maybe wait for TXD
while (!(bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_TXD))
;
// Write to FIFO, no barrier
bcm2835_peri_write_nb(fifo, tbuf[i]);
}
// Wait for DONE to be set
while (!(bcm2835_peri_read_nb(paddr) & BCM2835_SPI0_CS_DONE))
;
// Set TA = 0, and also set the barrier
bcm2835_peri_set_bits(paddr, 0, BCM2835_SPI0_CS_TA);
// Custom chip select HIGH
bcm2835_spi_setChipSelect(HIGH);
}
// Writes (and reads) an number of bytes to SPI
// Read bytes are copied over onto the transmit buffer
void bcm2835_spi_transfern(char* buf, uint32_t len)
{
bcm2835_spi_transfernb(buf, buf, len);
}
void bcm2835_spi_chipSelect(uint8_t cs)
{
// All is done now in bcm2835_spi_begin()
}
void bcm2835_spi_setChipSelectPolarity(uint8_t cs, uint8_t active)
{
volatile uint32_t* paddr = bcm2835_spi0 + BCM2835_SPI0_CS/4;
// only valid for no custom CS
if (cs <= BCM2835_SPI_CS_NONE)
{
uint8_t shift = 21 + cs;
// Mask in the appropriate CSPOLn bit
bcm2835_peri_set_bits(paddr, active << shift, 1 << shift);
}
}
void bcm2835_i2c_begin(void)
{
volatile uint32_t* paddr = bcm2835_bsc1 + BCM2835_BSC_DIV/4;
// Set the I2C/BSC1 pins to the Alt 0 function to enable I2C access on them
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_03, BCM2835_GPIO_FSEL_ALT0); // SDA
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_05, BCM2835_GPIO_FSEL_ALT0); // SCL
// Read the clock divider register
uint16_t cdiv = bcm2835_peri_read(paddr);
// Calculate time for transmitting one byte
// 1000000 = micros seconds in a second
// 9 = Clocks per byte : 8 bits + ACK
i2c_byte_wait_us = ((float)cdiv / BCM2835_CORE_CLK_HZ) * 1000000 * 9;
}
void bcm2835_i2c_end(void)
{
// Set all the I2C/BSC1 pins back to input
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_03, BCM2835_GPIO_FSEL_INPT); // SDA
bcm2835_gpio_fsel(RPI_V2_GPIO_P1_05, BCM2835_GPIO_FSEL_INPT); // SCL
}
void bcm2835_i2c_setSlaveAddress(uint8_t addr)
{
// Set I2C Device Address
volatile uint32_t* paddr = bcm2835_bsc1 + BCM2835_BSC_A/4;
bcm2835_peri_write(paddr, addr);
}
// defaults to 0x5dc, should result in a 166.666 kHz I2C clock frequency.
// The divisor must be a power of 2. Odd numbers
// rounded down.
void bcm2835_i2c_setClockDivider(uint16_t divider)
{
volatile uint32_t* paddr = bcm2835_bsc1 + BCM2835_BSC_DIV/4;
bcm2835_peri_write(paddr, divider);
// Calculate time for transmitting one byte
// 1000000 = micros seconds in a second
// 9 = Clocks per byte : 8 bits + ACK
i2c_byte_wait_us = ((float)divider / BCM2835_CORE_CLK_HZ) * 1000000 * 9;
}
// Writes an number of bytes to I2C
uint8_t bcm2835_i2c_write(const char * buf, uint32_t len)
{
volatile uint32_t* dlen = bcm2835_bsc1 + BCM2835_BSC_DLEN/4;
volatile uint32_t* fifo = bcm2835_bsc1 + BCM2835_BSC_FIFO/4;
volatile uint32_t* status = bcm2835_bsc1 + BCM2835_BSC_S/4;
volatile uint32_t* control = bcm2835_bsc1 + BCM2835_BSC_C/4;
uint32_t remaining = len;
uint32_t i = 0;
uint8_t reason = BCM2835_I2C_REASON_OK;
// Clear FIFO
bcm2835_peri_set_bits(control, BCM2835_BSC_C_CLEAR_1 , BCM2835_BSC_C_CLEAR_1 );
// Clear Status
bcm2835_peri_write_nb(status, BCM2835_BSC_S_CLKT | BCM2835_BSC_S_ERR | BCM2835_BSC_S_DONE);
// Set Data Length
bcm2835_peri_write_nb(dlen, len);
// Enable device and start transfer
bcm2835_peri_write_nb(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST);
while (!(bcm2835_peri_read(status) & BCM2835_BSC_S_DONE))
{
while ((bcm2835_peri_read(status) & BCM2835_BSC_S_TXD) && remaining)
{
// Write to FIFO, no barrier
bcm2835_peri_write_nb(fifo, buf[i]);
i++;
remaining--;
}
// When remaining data is to be send, then wait for an empty FIFO
if (remaining >= BCM2835_BSC_FIFO_SIZE)
delayMicroseconds(i2c_byte_wait_us * BCM2835_BSC_FIFO_SIZE);
else
delayMicroseconds(i2c_byte_wait_us * remaining);
}
// Received a NACK
if (bcm2835_peri_read(status) & BCM2835_BSC_S_ERR)
{
reason = BCM2835_I2C_REASON_ERROR_NACK;
}
// Received Clock Stretch Timeout
else if (bcm2835_peri_read(status) & BCM2835_BSC_S_CLKT)
{
reason = BCM2835_I2C_REASON_ERROR_CLKT;
}
// Not all data is sent
else if (remaining)
{
reason = BCM2835_I2C_REASON_ERROR_DATA;
}
bcm2835_peri_set_bits(control, BCM2835_BSC_S_DONE , BCM2835_BSC_S_DONE);
return reason;
}
// Read an number of bytes from I2C
uint8_t bcm2835_i2c_read(char* buf, uint32_t len)
{
volatile uint32_t* dlen = bcm2835_bsc1 + BCM2835_BSC_DLEN/4;
volatile uint32_t* fifo = bcm2835_bsc1 + BCM2835_BSC_FIFO/4;
volatile uint32_t* status = bcm2835_bsc1 + BCM2835_BSC_S/4;
volatile uint32_t* control = bcm2835_bsc1 + BCM2835_BSC_C/4;
uint32_t remaining = len;
uint32_t i = 0;
uint8_t reason = BCM2835_I2C_REASON_OK;
// Clear FIFO
bcm2835_peri_set_bits(control, BCM2835_BSC_C_CLEAR_1 , BCM2835_BSC_C_CLEAR_1 );
// Clear Status
bcm2835_peri_write_nb(status, BCM2835_BSC_S_CLKT | BCM2835_BSC_S_ERR | BCM2835_BSC_S_DONE);
// Set Data Length
bcm2835_peri_write_nb(dlen, len);
// Start read
bcm2835_peri_write_nb(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST | BCM2835_BSC_C_READ);
while (!(bcm2835_peri_read(status) & BCM2835_BSC_S_DONE))
{
while (bcm2835_peri_read(status) & BCM2835_BSC_S_RXD)
{
// Read from FIFO, no barrier
buf[i] = bcm2835_peri_read_nb(fifo);
i++;
remaining--;
}
// When remaining data is to be received, then wait for a fully FIFO
if (remaining >= BCM2835_BSC_FIFO_SIZE)
delayMicroseconds(i2c_byte_wait_us * BCM2835_BSC_FIFO_SIZE);
else
delayMicroseconds(i2c_byte_wait_us * remaining);
}
// Received a NACK
if (bcm2835_peri_read(status) & BCM2835_BSC_S_ERR)
{
reason = BCM2835_I2C_REASON_ERROR_NACK;
}
// Received Clock Stretch Timeout
else if (bcm2835_peri_read(status) & BCM2835_BSC_S_CLKT)
{
reason = BCM2835_I2C_REASON_ERROR_CLKT;
}
// Not all data is received
else if (remaining)
{
reason = BCM2835_I2C_REASON_ERROR_DATA;
}
bcm2835_peri_set_bits(control, BCM2835_BSC_S_DONE , BCM2835_BSC_S_DONE);
return reason;
}
// Read the System Timer Counter (64-bits)
uint64_t bcm2835_st_read(void)
{
volatile uint32_t* paddr;
uint64_t st;
paddr = bcm2835_st + BCM2835_ST_CHI/4;
st = bcm2835_peri_read(paddr);
st <<= 32;
paddr = bcm2835_st + BCM2835_ST_CLO/4;
st += bcm2835_peri_read(paddr);
return st;
}
// Delays for the specified number of microseconds with offset
void bcm2835_st_delay(uint64_t offset_micros, uint64_t micros)
{
uint64_t compare = offset_micros + micros;
while(bcm2835_st_read() < compare)
;
}
// Allocate page-aligned memory.
void *malloc_aligned(size_t size)
{
void *mem;
errno = posix_memalign(&mem, BCM2835_PAGE_SIZE, size);
return (errno ? NULL : mem);
}