-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmodel.py
90 lines (66 loc) · 2.75 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from __future__ import division
from keras.models import Model
from keras.layers import *
from keras.layers.core import *
from keras.layers.convolutional import *
from keras import backend as K
from keras.optimizers import rmsprop
import tensorflow as tf
def one_obj(frame_l=16, joint_n=15, joint_d=3):
input_joints = Input(name='joints', shape=(frame_l, joint_n, joint_d))
input_joints_diff = Input(name='joints_diff', shape=(frame_l, joint_n, joint_d))
##########branch 1##############
x = Conv2D(filters = 32, kernel_size=(1,1),padding='same')(input_joints)
x = BatchNormalization()(x)
x = LeakyReLU()(x)
x = Conv2D(filters = 16, kernel_size=(3,1),padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU()(x)
x = Permute((1,3,2))(x)
x = Conv2D(filters = 16, kernel_size=(3,3),padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU()(x)
##########branch 1##############
##########branch 2##############Temporal difference
x_d = Conv2D(filters = 32, kernel_size=(1,1),padding='same')(input_joints_diff)
x_d = BatchNormalization()(x_d)
x_d = LeakyReLU()(x_d)
x_d = Conv2D(filters = 16, kernel_size=(3,1),padding='same')(x_d)
x_d = BatchNormalization()(x_d)
x_d = LeakyReLU()(x_d)
x_d = Permute((1,3,2))(x_d)
x_d = Conv2D(filters = 16, kernel_size=(3,3),padding='same')(x_d)
x_d = BatchNormalization()(x_d)
x_d = LeakyReLU()(x_d)
##########branch 2##############
x = concatenate([x,x_d],axis=-1)
x = Conv2D(filters = 32, kernel_size=(1,1),padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU()(x)
x = MaxPool2D(pool_size=(2, 2))(x)
x = Dropout(0.1)(x)
x = Conv2D(filters = 64, kernel_size=(1,1),padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU()(x)
x = MaxPool2D(pool_size=(2, 2))(x)
x = Dropout(0.1)(x)
model = Model([input_joints,input_joints_diff],x)
return model
def multi_obj(frame_l=16, joint_n=15, joint_d=3):
inp_j_0 = Input(name='inp_j_0', shape=(frame_l, joint_n, joint_d))
inp_j_diff_0 = Input(name='inp_j_diff_0', shape=(frame_l, joint_n, joint_d))
inp_j_1 = Input(name='inp_j_1', shape=(frame_l, joint_n, joint_d))
inp_j_diff_1 = Input(name='inp_j_diff_1', shape=(frame_l, joint_n, joint_d))
single = one_obj()
x_0 = single([inp_j_0,inp_j_diff_0])
x_1 = single([inp_j_1,inp_j_diff_1])
x = Maximum()([x_0,x_1])
x = Flatten()(x)
x = Dropout(0.1)(x)
x = Dense(256)(x)
x = BatchNormalization()(x)
x = LeakyReLU()(x)
x = Dropout(0.1)(x)
x = Dense(8, activation='sigmoid')(x)
model = Model([inp_j_0,inp_j_diff_0,inp_j_1,inp_j_diff_1],x)
return model