-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
86 lines (67 loc) · 2.48 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import torchvision.transforms as T
from dalle_pytorch import VQGanVAE
from dalle.models import DALLE_Klue_Roberta
from transformers import AutoTokenizer
import gradio as gr
import yaml
from easydict import EasyDict
dalle_config_path = 'configs/dalle_config.yaml'
dalle_path = 'results/dalle_uk_final.pt'
vqgan_config_path = '/home/brad/Development/taming-transformers/configs/VQGAN_blue.yaml'
vqgan_path = '/home/brad/Development/taming-transformers/logs/2022-07-21T12-44-12_VQGAN_blue/checkpoints/best.ckpt'
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
tokenizer = AutoTokenizer.from_pretrained("klue/roberta-large")
with open(dalle_config_path, "r") as f:
dalle_config = yaml.load(f, Loader=yaml.Loader)
DALLE_CFG = EasyDict(dalle_config["DALLE_CFG"])
DALLE_CFG.VOCAB_SIZE = tokenizer.vocab_size
vae = VQGanVAE(
vqgan_model_path=vqgan_path,
vqgan_config_path=vqgan_config_path
)
DALLE_CFG.IMAGE_SIZE = vae.image_size
dalle_params = dict(
num_text_tokens=tokenizer.vocab_size,
text_seq_len=DALLE_CFG.TEXT_SEQ_LEN,
depth=DALLE_CFG.DEPTH,
heads=DALLE_CFG.HEADS,
dim_head=DALLE_CFG.DIM_HEAD,
reversible=DALLE_CFG.REVERSIBLE,
loss_img_weight=DALLE_CFG.LOSS_IMG_WEIGHT,
attn_types=DALLE_CFG.ATTN_TYPES,
ff_dropout=DALLE_CFG.FF_DROPOUT,
attn_dropout=DALLE_CFG.ATTN_DROPOUT,
stable=DALLE_CFG.STABLE,
shift_tokens=DALLE_CFG.SHIFT_TOKENS,
rotary_emb=DALLE_CFG.ROTARY_EMB,
)
dalle = DALLE_Klue_Roberta(
vae=vae,
wte_dir="models/roberta_large_wte.pt",
wpe_dir="models/roberta_large_wpe.pt",
**dalle_params
).to(device)
loaded_obj = torch.load(dalle_path, map_location=torch.device('cuda:0'))
dalle_params, vae_params, weights = loaded_obj['hparams'], loaded_obj['vae_params'], loaded_obj['weights']
dalle.load_state_dict(weights)
def text_to_montage(text):
encoded_dict = tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=DALLE_CFG.TEXT_SEQ_LEN,
add_special_tokens=True,
return_token_type_ids=True, # for RoBERTa
).to(device)
encoded_text = encoded_dict['input_ids']
mask = encoded_dict['attention_mask']
image = dalle.generate_images(
encoded_text,
mask=mask,
filter_thres=0.9 # topk sampling at 0.9
)
return T.ToPILImage()(image.squeeze())
demo = gr.Interface(fn=text_to_montage, inputs="text", outputs="image")
demo.launch(server_name="0.0.0.0")