-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsparrKULee.py
421 lines (366 loc) · 12.5 KB
/
sparrKULee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
"""Run the default preprocessing pipeline on soarrKULee."""
import argparse
import datetime
import gzip
import json
import logging
import os
from typing import Any, Dict, Sequence
import librosa
import numpy as np
import math
import scipy.signal.windows
from brain_pipe.dataloaders.path import GlobLoader
from brain_pipe.pipeline.default import DefaultPipeline
from brain_pipe.preprocessing.brain.artifact import (
InterpolateArtifacts,
ArtifactRemovalMWF,
)
from brain_pipe.preprocessing.brain.eeg.biosemi import (
biosemi_trigger_processing_fn,
)
from brain_pipe.preprocessing.brain.eeg.load import LoadEEGNumpy
from brain_pipe.preprocessing.brain.epochs import SplitEpochs
from brain_pipe.preprocessing.brain.link import (
LinkStimulusToBrainResponse,
BIDSStimulusInfoExtractor,
)
from brain_pipe.preprocessing.brain.rereference import CommonAverageRereference
from brain_pipe.preprocessing.brain.trigger import (
AlignPeriodicBlockTriggers,
)
from brain_pipe.preprocessing.filter import SosFiltFilt
from brain_pipe.preprocessing.resample import ResamplePoly
from brain_pipe.preprocessing.stimulus.audio.envelope import GammatoneEnvelope
from brain_pipe.preprocessing.stimulus.audio.spectrogram import LibrosaMelSpectrogram
from brain_pipe.preprocessing.stimulus.load import LoadStimuli
from brain_pipe.runner.default import DefaultRunner
from brain_pipe.save.default import DefaultSave
# from mel import DefaultSave
from brain_pipe.utils.log import default_logging, DefaultFormatter
from brain_pipe.utils.path import BIDSStimulusGrouper
class BIDSAPRStimulusInfoExtractor(BIDSStimulusInfoExtractor):
"""Extract BIDS compliant stimulus information from an .apr file."""
def __call__(self, brain_dict: Dict[str, Any]):
"""Extract BIDS compliant stimulus information from an events.tsv file.
Parameters
----------
brain_dict: Dict[str, Any]
The data dict containing the brain data path.
Returns
-------
Sequence[Dict[str, Any]]
The extracted event information. Each dict contains the information
of one row in the events.tsv file
"""
event_info = super().__call__(brain_dict)
# Find the apr file
path = brain_dict[self.brain_path_key]
apr_path = "_".join(path.split("_")[:-1]) + "_eeg.apr"
# Read apr file
apr_data = self.get_apr_data(apr_path)
# Add apr data to event info
for e_i in event_info:
e_i.update(apr_data)
return event_info
def get_apr_data(self, apr_path: str):
"""Get the SNR from an .apr file.
Parameters
----------
apr_path: str
Path to the .apr file.
Returns
-------
Dict[str, Any]
The SNR.
"""
import xml.etree.ElementTree as ET
apr_data = {}
tree = ET.parse(apr_path)
root = tree.getroot()
# Get SNR
interactive_elements = root.findall(".//interactive/entry")
for element in interactive_elements:
description_element = element.find("description")
if description_element.text == "SNR":
apr_data["snr"] = element.find("new_value").text
if "snr" not in apr_data:
logging.warning(f"Could not find SNR in {apr_path}.")
apr_data["snr"] = 100.0
return apr_data
def default_librosa_load_fn(path):
"""Load a stimulus using librosa.
Parameters
----------
path: str
Path to the audio file.
Returns
-------
Dict[str, Any]
The data and the sampling rate.
"""
data, sr = librosa.load(path, sr=None)
return {"data": data, "sr": sr}
def default_npz_load_fn(path):
"""Load a stimulus from a .npz file.
Parameters
----------
path: str
Path to the .npz file.
Returns
-------
Dict[str, Any]
The data and the sampling rate.
"""
np_data = np.load(path)
return {
"data": np_data["audio"],
"sr": np_data["fs"],
}
DEFAULT_LOAD_FNS = {
".wav": default_librosa_load_fn,
".mp3": default_librosa_load_fn,
".npz": default_npz_load_fn,
}
def temp_stimulus_load_fn(path):
"""Load stimuli from (Gzipped) files.
Parameters
----------
path: str
Path to the stimulus file.
Returns
-------
Dict[str, Any]
Dict containing the data under the key "data" and the sampling rate
under the key "sr".
"""
if path.endswith(".gz"):
with gzip.open(path, "rb") as f_in:
data = dict(np.load(f_in))
return {
"data": data["audio"],
"sr": data["fs"],
}
extension = "." + ".".join(path.split(".")[1:])
if extension not in DEFAULT_LOAD_FNS:
raise ValueError(
f"Can't find a load function for extension {extension}. "
f"Available extensions are {str(list(DEFAULT_LOAD_FNS.keys()))}."
)
load_fn = DEFAULT_LOAD_FNS[extension]
return load_fn(path)
def bids_filename_fn(data_dict, feature_name, set_name=None):
"""Default function to generate a filename for the data.
Parameters
----------
data_dict: Dict[str, Any]
The data dict containing the data to save.
feature_name: str
The name of the feature.
set_name: Optional[str]
The name of the set. If no set name is given, the set name is not
included in the filename.
Returns
-------
str
The filename.
"""
filename = os.path.basename(data_dict["data_path"]).split("_eeg")[0]
subject = filename.split("_")[0]
session = filename.split("_")[1]
filename += f"_desc-preproc-audio-{os.path.basename(data_dict.get('stimulus_path', '*.')).split('.')[0]}_{feature_name}"
if set_name is not None:
filename += f"_set-{set_name}"
return os.path.join(subject, session, filename + ".npy")
def get_hop_length(arg, data_dict):
return int((1 / 128) * data_dict["stimulus_sr"])
def get_n_fft(arg, data_dict):
return int(math.pow(2, math.ceil(math.log2(int(0.025 * data_dict["stimulus_sr"])))))
def get_win_length(arg, data_dict):
return int(0.025 * data_dict["stimulus_sr"])
def get_default_librosa_kwargs():
librosa_kwargs = {
"window": 'hann',
"hop_length": get_hop_length,
"n_fft": get_n_fft,
"win_length": get_win_length,
"fmin": 0,
"fmax": 5000,
"htk": False,
"n_mels": 10,
"center": False,
"norm": 'slaney'
}
return librosa_kwargs
def run_preprocessing_pipeline(
root_dir,
preprocessed_stimuli_dir,
preprocessed_eeg_dir,
nb_processes=4,
overwrite=False,
log_path="sparrKULee.log",
):
"""Construct and run the preprocessing on SparrKULee.
Parameters
----------
root_dir: str
The root directory of the dataset.
preprocessed_stimuli_dir:
The directory where the preprocessed stimuli should be saved.
preprocessed_eeg_dir:
The directory where the preprocessed EEG should be saved.
nb_processes: int
The number of processes to use. If -1, the number of processes is
automatically determined.
overwrite: bool
Whether to overwrite existing files.
log_path: str
The path to the log file.
"""
#########
# PATHS #
#########
os.makedirs(preprocessed_eeg_dir, exist_ok=True)
os.makedirs(preprocessed_stimuli_dir, exist_ok=True)
###########
# LOGGING #
###########
handler = logging.FileHandler(log_path)
handler.setLevel(logging.DEBUG)
handler.setFormatter(DefaultFormatter())
default_logging(handlers=[handler])
################
# DATA LOADING #
################
logging.info("Retrieving BIDS layout...")
data_loader = GlobLoader(
[os.path.join(root_dir, "sub-*", "*", "eeg", "*.bdf*")],
filter_fns=[lambda x: "restingState" not in x],
key="data_path",
)
#########
# STEPS #
#########
stimulus_steps = DefaultPipeline(
steps=[
LoadStimuli(load_fn=temp_stimulus_load_fn),
GammatoneEnvelope(),
LibrosaMelSpectrogram(librosa_kwargs=get_default_librosa_kwargs()),
ResamplePoly(64, data_key = ['spectrogram_data', 'envelope_data'], sampling_frequency_key = ['spectrogram_sr', 'stimulus_sr'], axis=0),
DefaultSave(
preprocessed_stimuli_dir,
to_save={'mel': 'spectrogram_data', 'envelope': 'envelope_data' },
overwrite=overwrite
),
DefaultSave(preprocessed_stimuli_dir, overwrite=overwrite),
],
on_error=DefaultPipeline.RAISE,
)
eeg_steps = [
LinkStimulusToBrainResponse(
stimulus_data=stimulus_steps,
extract_stimuli_information_fn=BIDSAPRStimulusInfoExtractor(),
grouper=BIDSStimulusGrouper(
bids_root=root_dir,
mapping={"stim_file": "stimulus_path", "trigger_file": "trigger_path"},
subfolders=["stimuli", "eeg"],
),
),
LoadEEGNumpy(unit_multiplier=1e6, channels_to_select=list(range(64))),
SosFiltFilt(
scipy.signal.butter(1, 0.5, "highpass", fs=1024, output="sos"),
emulate_matlab=True,
axis=1,
),
InterpolateArtifacts(),
AlignPeriodicBlockTriggers(biosemi_trigger_processing_fn),
SplitEpochs(),
ArtifactRemovalMWF(),
CommonAverageRereference(),
ResamplePoly(64, axis=1),
DefaultSave(
preprocessed_eeg_dir,
{"eeg": "data"},
overwrite=overwrite,
clear_output=True,
filename_fn=bids_filename_fn,
),
]
#########################
# RUNNING THE PIPELINE #
#########################
logging.info("Starting with the EEG preprocessing")
logging.info("===================================")
# Create data_dicts for the EEG files
# Create the EEG pipeline
eeg_pipeline = DefaultPipeline(steps=eeg_steps)
DefaultRunner(
nb_processes=nb_processes,
logging_config=lambda: None,
).run(
[(data_loader, eeg_pipeline)],
)
if __name__ == "__main__":
# Load the config
# get the top folder of the dataset
challenge_folder = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
with open(os.path.join(challenge_folder, 'util', 'config.json'), "r") as f:
config = json.load(f)
# Set the correct paths as default arguments
dataset_folder = config["dataset_folder"]
derivatives_folder = os.path.join(dataset_folder, config["derivatives_folder"])
preprocessed_stimuli_folder = os.path.join(
derivatives_folder, config["preprocessed_stimuli_folder"]
)
preprocessed_eeg_folder = os.path.join(
derivatives_folder, config["preprocessed_eeg_folder"]
)
default_log_folder = os.path.dirname(os.path.abspath(__file__))
# Parse arguments from the command line
parser = argparse.ArgumentParser(description="Preprocess the auditory EEG dataset")
parser.add_argument(
"--nb_processes",
type=int,
default=-1,
help="Number of processes to use for the preprocessing. "
"The default is to use all available cores (-1).",
)
parser.add_argument(
"--overwrite", action="store_true", help="Overwrite existing files"
)
parser.add_argument(
"--log_path", type=str, default=os.path.join(
default_log_folder,
"sparrKULee_{datetime}.log"
)
)
parser.add_argument(
"--dataset_folder",
type=str,
default=dataset_folder,
help="Path to the folder where the dataset is downloaded",
)
parser.add_argument(
"--preprocessed_stimuli_path",
type=str,
default=preprocessed_stimuli_folder,
help="Path to the folder where the preprocessed stimuli will be saved",
)
parser.add_argument(
"--preprocessed_eeg_path",
type=str,
default=preprocessed_eeg_folder,
help="Path to the folder where the preprocessed EEG will be saved",
)
args = parser.parse_args()
# Run the preprocessing pipeline
run_preprocessing_pipeline(
args.dataset_folder,
args.preprocessed_stimuli_path,
args.preprocessed_eeg_path,
args.nb_processes,
args.overwrite,
args.log_path.format(
datetime=datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
),
)