-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdatasets_prepare.py
246 lines (202 loc) · 8.13 KB
/
datasets_prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")
import os
import multiprocessing
import glob
import torch
import torchaudio
import csv
from pathlib import Path
from tqdm import tqdm
from supervoice.audio import load_mono_audio, spectogram
from supervoice.model_style import export_style
from supervoice.config import config
from utils.audio import trim_silence, improve_audio, dowload_enhancer
import pyworld as pw
#
# Parameters
#
PARAM_WORKERS = max(torch.cuda.device_count() * 4, 4)
CLEANUP_SYMBOLS = [
"\n",
"\r",
"\t",
"-",
"\"",
# "\'" # Breaks the text with apostrophes
]
#
# Execution
#
def speaker_directory(speaker):
return str(speaker).zfill(8)
def execute_parallel(args):
process_id = multiprocessing.current_process()._identity[0]
files, vad, collection_dir, index = args
file, text, speaker = files[index]
device = "cuda:" + str(process_id % torch.cuda.device_count())
# Format filename from index (e.g. 000001)
target_name = str(index).zfill(8)
# Load audio
waveform = load_mono_audio(file, config.audio.sample_rate, device=device)
# Trim silence
if vad:
waveform = trim_silence(waveform, config.audio.sample_rate)
# Enhance audio
# waveform = improve_audio(waveform, config.audio.sample_rate)
# Spectogram
spec = spectogram(waveform, config.audio.n_fft, config.audio.n_mels, config.audio.hop_size, config.audio.win_size, config.audio.mel_norm, config.audio.mel_scale, config.audio.sample_rate)
# Calculate style tokens
style = export_style(config, waveform, spec)
# Clean up text
for symbol in CLEANUP_SYMBOLS:
text = text.replace(symbol, " ")
text = " ".join(text.split()) # Remove multiple spaces
text = text.strip()
# Save
target_dir = os.path.join(collection_dir, speaker_directory(speaker))
torchaudio.save(os.path.join(target_dir, target_name + ".wav"), waveform.unsqueeze(0).cpu(), config.audio.sample_rate)
torch.save(spec.cpu(), os.path.join(target_dir, target_name + ".pt"))
torch.save(style.cpu(), os.path.join(target_dir, target_name + ".style.pt"))
with open(os.path.join(target_dir, target_name + ".txt"), "w", encoding="utf-8") as f:
f.write(text)
def load_vctk_corpus():
files = []
speakers = {}
# Load vctk corpus
for file in glob.glob("external_datasets/vctk-corpus-0.92/**/*.flac"):
directory, filename = os.path.split(file)
_, speaker = os.path.split(directory)
speaker = "vctk_" + speaker
# Check if file is a valid audio file
if file.endswith("_mic1.flac") or file.endswith("_mic2.flac"):
# Load text
base = filename[:-10]
text_file = os.path.join(directory, base + ".txt")
if os.path.exists(text_file):
with open(text_file, "r") as f:
text = f.read()
else:
continue # not found
# Extract speaker
if speaker not in speakers:
speakers[speaker] = len(speakers)
speaker = speakers[speaker]
# Append
files.append((file, text, speaker))
else:
print("Strange filename:", filename)
return { 'files': files, 'speakers': speakers, 'vad': False }
def load_libritts_corpus(collections):
files = []
speakers = {}
# Ignore bad samples
ignored = {}
ignore_files = [
"train-clean-100_bad_sample_list.txt",
"train-clean-360_bad_sample_list.txt",
"train-other-500_bad_sample_list.txt",
"test-clean_bad_sample_list.txt",
"test-other_bad_sample_list.txt",
"dev-clean_bad_sample_list.txt",
"dev-other_bad_sample_list.txt"
]
for file_list_file in ignore_files:
with open("external_datasets/libritts-r/failed/" + file_list_file, "r") as f:
for line in f:
line = line.replace("./train-clean-100/", "external_datasets/libritts-r-clean-100/")
line = line.replace("./train-clean-360/", "external_datasets/libritts-r-clean-360/")
line = line.replace("./train-other-500/", "external_datasets/libritts-r-other-500/")
line = line.replace("./test-clean/", "external_datasets/libritts-r/test-clean/")
line = line.replace("./test-other/", "external_datasets/libritts-r/test-other/")
line = line.replace("./dev-clean/", "external_datasets/libritts-r/dev-clean/")
line = line.replace("./dev-other/", "external_datasets/libritts-r/dev-other/")
ignored[line.strip()] = True
# Load vctk corpus
files_index = []
for c in collections:
files_index += glob.glob(f"external_datasets/{c}/*/*/*.wav")
for file in files_index:
p = Path(file)
filename = p.name
directory = p.parent
speaker = "libritts_" + p.parents[1].name
# Check if file is a valid audio file
if file in ignored:
# print("Ignored file: " + file)
continue
# Load text
base = filename[:-4]
text_file = os.path.join(directory, base + ".normalized.txt")
if os.path.exists(text_file):
with open(text_file, "r") as f:
text = f.read()
else:
print("Text not found: " + text_file)
continue # not found
# Extract speaker
if speaker not in speakers:
speakers[speaker] = len(speakers)
speaker = speakers[speaker]
# Append
files.append((file, text, speaker))
return { 'files': files, 'speakers': speakers, 'vad': False }
def load_common_voice_corpus(path):
files = []
speakers = {}
# Load CSV
with open(path + "/train.tsv") as f:
reader = csv.reader(f, delimiter="\t")
next(reader) # Skip header
data = list(reader)
# Extract files and speakers
for row in data:
file = path + "/clips/" + row[1]
speaker = "cv_" + row[0]
text = row[2]
# Extract speaker
if speaker not in speakers:
speakers[speaker] = len(speakers)
speaker = speakers[speaker]
# Append
files.append((file, text, speaker))
return { 'files': files, 'speakers': speakers, 'vad': True }
def execute_run():
torch.multiprocessing.set_start_method('spawn')
# dowload_enhancer()
# Indexing files
print("Build file index...")
collections = {}
collections['libritts'] = load_libritts_corpus(["libritts-r-clean-100", "libritts-r-clean-360"])
collections['eval'] = load_libritts_corpus(["libritts-r/test-clean"])
collections['vctk'] = load_vctk_corpus()
# collections['common-voice-en'] = load_common_voice_corpus("external_datasets/common-voice-16.0-en/en")
# collections['common-voice-ru'] = load_common_voice_corpus("external_datasets/common-voice-16.0-ru/ru")
# collections['common-voice-uk'] = load_common_voice_corpus("external_datasets/common-voice-16.0-uk/uk")
# Process collections
for collection in collections:
print(f"Processing collection {collection} with {len(collections[collection]['files'])} files")
name = collection
files = collections[collection]['files']
speakers = collections[collection]['speakers']
vad = collections[collection]['vad']
prepared_dir = "datasets/" + name + "-prepared/"
# Check if exists
if Path(prepared_dir).exists():
print(f"Collection {name} already prepared")
continue
# Creating directories
for speaker in speakers:
Path(prepared_dir + speaker_directory(speakers[speaker])).mkdir(parents=True, exist_ok=True)
# Process files
with multiprocessing.Manager() as manager:
files = manager.list(files)
args_list = [(files, vad, prepared_dir, i) for i in range(len(files))]
with multiprocessing.Pool(processes=PARAM_WORKERS) as pool:
for result in tqdm(pool.imap_unordered(execute_parallel, args_list, chunksize=32), total=len(files)):
pass
# End
print("Done")
if __name__ == "__main__":
execute_run()