-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathshishua.h
234 lines (216 loc) · 9.17 KB
/
shishua.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#ifndef SHISHUA_H
#define SHISHUA_H
#define SHISHUA_TARGET_SCALAR 0
#define SHISHUA_TARGET_AVX2 1
#define SHISHUA_TARGET_SSE2 2
#define SHISHUA_TARGET_NEON 3
#ifndef SHISHUA_TARGET
# if defined(__AVX2__) && (defined(__x86_64__) || defined(_M_X64))
# define SHISHUA_TARGET SHISHUA_TARGET_AVX2
# elif defined(__x86_64__) || defined(_M_X64) || defined(__SSE2__) || (defined(_M_IX86_FP) && _M_IX86_FP >= 2)
# define SHISHUA_TARGET SHISHUA_TARGET_SSE2
// GCC's NEON codegen leaves much to be desired, at least as of 9.2.0. The
// scalar path ends up being faster.
// Device: Google Pixel 2 XL, 2.46GHz Qualcomm Snapdragon 835
// algorithm | GCC 9.2.0 | Clang 9.0.1
// shishua neon | 0.2845 ns/byte | 0.0966 ns/byte
// shishua scalar | 0.2056 ns/byte | 0.2958 ns/byte
// shishua half neon | 0.5169 ns/byte | 0.1929 ns/byte
// shishua half scalar | 0.2496 ns/byte | 0.2911 ns/byte
// Therefore, we only autoselect the NEON path on Clang, at least until GCC's
// NEON codegen improves.
# elif (defined(__ARM_NEON) || defined(__ARM_NEON__)) && defined(__clang__)
# define SHISHUA_TARGET SHISHUA_TARGET_NEON
# else
# define SHISHUA_TARGET SHISHUA_TARGET_SCALAR
# endif
#endif
// These are all optional, with defining SHISHUA_TARGET_SCALAR, you only
// need this header.
#if SHISHUA_TARGET == SHISHUA_TARGET_AVX2
# include "shishua-avx2.h"
#elif SHISHUA_TARGET == SHISHUA_TARGET_SSE2
# include "shishua-sse2.h"
#elif SHISHUA_TARGET == SHISHUA_TARGET_NEON
# include "shishua-neon.h"
#else // SHISHUA_TARGET == SHISHUA_TARGET_SCALAR
// Portable scalar implementation of shishua.
// Designed to balance performance and code size.
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include <assert.h>
// Note: While it is an array, a "lane" refers to 4 consecutive uint64_t.
typedef struct prng_state {
uint64_t state[16]; // 4 lanes
uint64_t output[16]; // 4 lanes, 2 parts
uint64_t counter[4]; // 1 lane
} prng_state;
// buf could technically alias with prng_state, according to the compiler.
#if defined(__GNUC__) || defined(_MSC_VER)
# define SHISHUA_RESTRICT __restrict
#else
# define SHISHUA_RESTRICT
#endif
// Writes a 64-bit little endian integer to dst
static inline void prng_write_le64(void *dst, uint64_t val) {
// Define to write in native endianness with memcpy
// Also, use memcpy on known little endian setups.
#if defined(SHISHUA_NATIVE_ENDIAN) \
|| defined(_WIN32) \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
|| defined(__LITTLE_ENDIAN__)
memcpy(dst, &val, sizeof(uint64_t));
#else
// Byteshift write.
uint8_t *d = (uint8_t *)dst;
for (size_t i = 0; i < 8; i++) {
d[i] = (uint8_t)(val & 0xff);
val >>= 8;
}
#endif
}
// buf's size must be a multiple of 128 bytes.
static inline void prng_gen(prng_state *SHISHUA_RESTRICT state, uint8_t *SHISHUA_RESTRICT buf, size_t size) {
uint8_t *b = buf;
// TODO: consider adding proper uneven write handling
assert((size % 128 == 0) && "buf's size must be a multiple of 128 bytes.");
for (size_t i = 0; i < size; i += 128) {
// Write the current output block to state if it is not NULL
if (buf != NULL) {
for (size_t j = 0; j < 16; j++) {
prng_write_le64(b, state->output[j]); b += 8;
}
}
// Similar to SSE, use fixed iteration loops to reduce code complexity
// and allow the compiler more control over optimization.
for (size_t j = 0; j < 2; j++) {
// I don't want to type this 15 times.
uint64_t *s = &state->state[j * 8]; // 2 lanes
uint64_t *o = &state->output[j * 4]; // 1 lane
uint64_t t[8]; // temp buffer
// I apply the counter to s1,
// since it is the one whose shift loses most entropy.
for (size_t k = 0; k < 4; k++) {
s[k + 4] += state->counter[k];
}
// The following shuffles move weak (low-diffusion) 32-bit parts of 64-bit
// additions to strong positions for enrichment. The low 32-bit part of a
// 64-bit chunk never moves to the same 64-bit chunk as its high part.
// They do not remain in the same chunk. Each part eventually reaches all
// positions ringwise: A to B, B to C, …, H to A.
//
// You may notice that they are simply 256-bit rotations (96 and 160):
//
// t0 = (s0 << 96) | (s0 >> (256 - 96));
// t1 = (s1 << 160) | (s1 >> (256 - 160));
//
// The easiest way to do this would be to cast s and t to uint32_t *
// and operate on them that way.
//
// uint32_t *t0_32 = (uint32_t *)t0, *t1_32 = (uint32_t *)t1;
// uint32_t *s0_32 = (uint32_t *)s0, *s1_32 = (uint32_t *)s1;
// for (size_t k = 0; k < 4; k++) {
// t0_32[k] = s0_32[(k + 5) % 8];
// t1_32[k] = s1_32[(k + 3) % 8];
// }
//
// This is pretty, but it violates strict aliasing and relies on little
// endian data layout.
//
// A common workaround to strict aliasing would be to use memcpy:
//
// // legal casts
// unsigned char *t8 = (unsigned char *)t;
// unsigned char *s8 = (unsigned char *)s;
// memcpy(&t8[0], &s8[20], 32 - 20);
// memcpy(&t8[32 - 20], &s8[0], 20);
//
// However, this still doesn't fix the endianness issue, and is very
// ugly.
//
// The only known solution which doesn't rely on endianness is to
// read two 64-bit integers and do a funnel shift.
// Lookup table for the _offsets_ in the shuffle. Even lanes rotate
// by 5, odd lanes rotate by 3.
// If it were by 32-bit lanes, it would be
// { 5,6,7,0,1,2,3,4, 11,12,13,14,15,8,9,10 }
const uint8_t shuf_offsets[16] = { 2,3,0,1, 5,6,7,4, // left
3,0,1,2, 6,7,4,5 }; // right
for (size_t k = 0; k < 8; k++) {
t[k] = (s[shuf_offsets[k]] >> 32) | (s[shuf_offsets[k + 8]] << 32);
}
for (size_t k = 0; k < 4; k++) {
// SIMD does not support rotations. Shift is the next best thing to entangle
// bits with other 64-bit positions. We must shift by an odd number so that
// each bit reaches all 64-bit positions, not just half. We must lose bits
// of information, so we minimize it: 1 and 3. We use different shift values
// to increase divergence between the two sides. We use rightward shift
// because the rightmost bits have the least diffusion in addition (the low
// bit is just a XOR of the low bits).
uint64_t u_lo = s[k + 0] >> 1;
uint64_t u_hi = s[k + 4] >> 3;
// Addition is the main source of diffusion.
// Storing the output in the state keeps that diffusion permanently.
s[k + 0] = u_lo + t[k + 0];
s[k + 4] = u_hi + t[k + 4];
// The first orthogonally grown piece evolving independently, XORed.
o[k] = u_lo ^ t[k + 4];
}
}
// Merge together.
for (size_t j = 0; j < 4; j++) {
// The second orthogonally grown piece evolving independently, XORed.
state->output[j + 8] = state->state[j + 0] ^ state->state[j + 12];
state->output[j + 12] = state->state[j + 8] ^ state->state[j + 4];
// The counter is not necessary to beat PractRand.
// It sets a lower bound of 2^71 bytes = 2 ZiB to the period,
// or about 7 millenia at 10 GiB/s.
// The increments are picked as odd numbers,
// since only coprimes of the base cover the full cycle,
// and all odd numbers are coprime of 2.
// I use different odd numbers for each 64-bit chunk
// for a tiny amount of variation stirring.
// I used the smallest odd numbers to avoid having a magic number.
//
// For the scalar version, we calculate this dynamically, as it is
// simple enough.
state->counter[j] += 7 - (j * 2); // 7, 5, 3, 1
}
}
}
#undef SHISHUA_RESTRICT
// Nothing up my sleeve: those are the hex digits of Φ,
// the least approximable irrational number.
// $ echo 'scale=310;obase=16;(sqrt(5)-1)/2' | bc
static uint64_t phi[16] = {
0x9E3779B97F4A7C15, 0xF39CC0605CEDC834, 0x1082276BF3A27251, 0xF86C6A11D0C18E95,
0x2767F0B153D27B7F, 0x0347045B5BF1827F, 0x01886F0928403002, 0xC1D64BA40F335E36,
0xF06AD7AE9717877E, 0x85839D6EFFBD7DC6, 0x64D325D1C5371682, 0xCADD0CCCFDFFBBE1,
0x626E33B8D04B4331, 0xBBF73C790D94F79D, 0x471C4AB3ED3D82A5, 0xFEC507705E4AE6E5,
};
void prng_init(prng_state *s, uint64_t seed[4]) {
memset(s, 0, sizeof(prng_state));
# define STEPS 1
# define ROUNDS 13
// Diffuse first two seed elements in s0, then the last two. Same for s1.
// We must keep half of the state unchanged so users cannot set a bad state.
memcpy(s->state, phi, sizeof(phi));
for (size_t i = 0; i < 4; i++) {
s->state[i * 2 + 0] ^= seed[i]; // { s0,0,s1,0,s2,0,s3,0 }
s->state[i * 2 + 8] ^= seed[(i + 2) % 4]; // { s2,0,s3,0,s0,0,s1,0 }
}
for (size_t i = 0; i < ROUNDS; i++) {
prng_gen(s, NULL, 128 * STEPS);
for (size_t j = 0; j < 4; j++) {
s->state[j+ 0] = s->output[j+12];
s->state[j+ 4] = s->output[j+ 8];
s->state[j+ 8] = s->output[j+ 4];
s->state[j+12] = s->output[j+ 0];
}
}
# undef STEPS
# undef ROUNDS
}
#endif // SHISHUA_TARGET == SHISHUA_TARGET_SCALAR
#endif // SHISHUA_SCALAR_H