-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnumerical_experiments.py
executable file
·130 lines (95 loc) · 3.91 KB
/
numerical_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python3
import itertools
from timeit import default_timer as timer
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from keras.utils.layer_utils import count_params
from PHNetworks.PHOptimizer import PortHamiltonianOptimizer as PHOpt
DEPTHS = [0, 1, 2, 4, 6]
LAYER_SIZES = [1000, 500, 250, 50]
EPOCHS = 6
IVP_PERIOD = 30.0
IVP_STEP_SIZE = 0.25
BATCH_SIZE = 60000
START_WITH_LARGEST = False
#########################################
# MODEL-CREATION-SPECIFIC FUNCTIONALITY #
#########################################
def get_layer_sizes(depths):
all_descending_layer_sizes = itertools.chain(*[
itertools.combinations_with_replacement(LAYER_SIZES, r) for r in depths
])
return all_descending_layer_sizes
def make_model(layer_sizes):
keras.backend.set_floatx('float64')
model = keras.models.Sequential(name='mnist_model')
# Make 28x28-entry two-dimensional input 784-entry one-dimensional
model.add(layers.Flatten(input_shape=(28, 28), name='input_layer'))
# Add hidden layers with respective layer sizes
for i, size in enumerate(layer_sizes, start=1):
model.add(layers.Dense(size, activation='sigmoid', name=f'hidden_layer_{i}'))
# Output layer: 10 nodes for 10 possible digits
model.add(layers.Dense(10, activation='sigmoid', name='output_layer'))
# Compile the model with additional info
model.compile(loss=keras.losses.CategoricalCrossentropy(), metrics=['accuracy'])
return model
def has_repetitions(iter, count=3):
last = None
reps = 0
for item in iter:
if item == last:
reps += 1
if reps >= count:
return True
else:
last = item
reps = 1
return False
#################################
# MODEL TRAINING AND EVALUATION #
#################################
# Load MNIST handwritten digits dataset
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# Prescale pixel byte brightness to float in range [0, 1]
x_train, x_test = x_train / 255.0, x_test / 255.0
# Convert integer category to activation of the output neurons
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
def train_and_evaluate(sizes, id=None):
model = make_model(sizes)
label = f'{id:03d}_784-{"".join([f"{size}-" for size in sizes])}10_{count_params(model.trainable_weights)}'
logdir = f'arch_eval_logs/{label}'
optimizer = PHOpt(ivp_period=IVP_PERIOD/EPOCHS, ivp_step_size=IVP_STEP_SIZE)
print(f'DESC: Training model {label}')
start = timer()
with tf.device('/gpu:0'):
optimizer.train(
model, x_train, y_train,
batch_size=BATCH_SIZE,
metrics=[keras.metrics.CategoricalAccuracy()],
callbacks=[
# tf.keras.callbacks.TensorBoard(logdir, update_freq=4, profile_batch=0)
],
epochs=EPOCHS
)
end = timer()
print(f'TIME: Training took {end - start:.2f}s')
_, accuracy = model.evaluate(x_test, y_test, verbose=0)
print(f'ACCU: Reached accuracy of {accuracy * 100:02.2f}%')
print(f'>>> {id:d},{len(sizes)+1:d},784-{"".join([f"{size}-" for size in sizes])}10,{count_params(model.trainable_weights)},{accuracy * 100:02.2f}%,{end - start:.2f}s')
del model
def exec():
layer_sizes = get_layer_sizes(DEPTHS)
layer_sizes = itertools.filterfalse(has_repetitions, layer_sizes)
layer_sizes = list(layer_sizes)
layer_sizes = sorted(layer_sizes, key=sum)
layer_sizes = list(enumerate(layer_sizes))
if START_WITH_LARGEST:
layer_sizes = list(reversed(layer_sizes))
print(f'COUN: Training {len(layer_sizes)} networks')
print('>>> run,layer count,layers,param count,accuracy,time')
for id, layer in layer_sizes:
train_and_evaluate(layer, id)
if __name__ == '__main__':
exec()