-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ui.py
58 lines (48 loc) · 1.84 KB
/
test_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import streamlit as st
import cv2
import numpy as np
from PIL import Image
import tensorflow as tf
import keras.models as models
import keras.preprocessing.image as image
st.set_page_config(
page_title = 'Cat/Loaf Classification',
page_icon = '🐱',
)
# Load your trained model
model = models.load_model('3x3x64-catvsloaf.model')
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Specify the desired width for displaying images
DISPLAY_WIDTH = 200
# Create a function to make predictions on user-uploaded images
def classify_image(image):
img = image.resize((100, 100))
img_array = np.array(img)
img_array = np.expand_dims(img_array, axis=0)
prediction = model.predict(img_array)
predicted_category_index = int(prediction[0][0])
predicted_category = 'loaf 🥖' if predicted_category_index == 1 else 'cat 🐈'
return predicted_category
# Resize the image while maintaining its aspect ratio
def resize_image(image, width):
original_width, original_height = image.size
aspect_ratio = original_width / original_height
height = int(width / aspect_ratio)
resized_image = image.resize((width, height))
return resized_image
# Create the Streamlit web app
def main():
st.title("Cat-Loaf Classification")
st.write("### Upload an image and I'll predict if it's a cat 🐈 or a loaf 🥖!")
# Create a file uploader in the app
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
# Make a prediction when a file is uploaded
if uploaded_file is not None:
img = Image.open(uploaded_file)
resized_img = resize_image(img, DISPLAY_WIDTH)
st.image(resized_img, use_column_width=True)
pred = classify_image(resized_img)
st.write("## Prediction:", pred)
# Run the app
if __name__ == '__main__':
main()