-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathgenerative_adversarial_network.py
168 lines (122 loc) · 5.71 KB
/
generative_adversarial_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from __future__ import print_function, division
from sklearn import datasets
import math
import matplotlib.pyplot as plt
import numpy as np
import progressbar
from sklearn.datasets import fetch_mldata
from mlfromscratch.deep_learning.optimizers import Adam
from mlfromscratch.deep_learning.loss_functions import CrossEntropy
from mlfromscratch.deep_learning.layers import Dense, Dropout, Flatten, Activation, Reshape, BatchNormalization
from mlfromscratch.deep_learning import NeuralNetwork
class GAN():
"""A Generative Adversarial Network with deep fully-connected neural nets as
Generator and Discriminator.
Training Data: MNIST Handwritten Digits (28x28 images)
"""
def __init__(self):
self.img_rows = 28
self.img_cols = 28
self.img_dim = self.img_rows * self.img_cols
self.latent_dim = 100
optimizer = Adam(learning_rate=0.0002, b1=0.5)
loss_function = CrossEntropy
# Build the discriminator
self.discriminator = self.build_discriminator(optimizer, loss_function)
# Build the generator
self.generator = self.build_generator(optimizer, loss_function)
# Build the combined model
self.combined = NeuralNetwork(optimizer=optimizer, loss=loss_function)
self.combined.layers.extend(self.generator.layers)
self.combined.layers.extend(self.discriminator.layers)
print ()
self.generator.summary(name="Generator")
self.discriminator.summary(name="Discriminator")
def build_generator(self, optimizer, loss_function):
model = NeuralNetwork(optimizer=optimizer, loss=loss_function)
model.add(Dense(256, input_shape=(self.latent_dim,)))
model.add(Activation('leaky_relu'))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(Activation('leaky_relu'))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(Activation('leaky_relu'))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(self.img_dim))
model.add(Activation('tanh'))
return model
def build_discriminator(self, optimizer, loss_function):
model = NeuralNetwork(optimizer=optimizer, loss=loss_function)
model.add(Dense(512, input_shape=(self.img_dim,)))
model.add(Activation('leaky_relu'))
model.add(Dropout(0.5))
model.add(Dense(256))
model.add(Activation('leaky_relu'))
model.add(Dropout(0.5))
model.add(Dense(2))
model.add(Activation('softmax'))
return model
def train(self, n_epochs, batch_size=128, save_interval=50):
mnist = fetch_mldata('MNIST original')
X = mnist.data
y = mnist.target
# Rescale [-1, 1]
X = (X.astype(np.float32) - 127.5) / 127.5
half_batch = int(batch_size / 2)
for epoch in range(n_epochs):
# ---------------------
# Train Discriminator
# ---------------------
self.discriminator.set_trainable(True)
# Select a random half batch of images
idx = np.random.randint(0, X.shape[0], half_batch)
imgs = X[idx]
# Sample noise to use as generator input
noise = np.random.normal(0, 1, (half_batch, self.latent_dim))
# Generate a half batch of images
gen_imgs = self.generator.predict(noise)
# Valid = [1, 0], Fake = [0, 1]
valid = np.concatenate((np.ones((half_batch, 1)), np.zeros((half_batch, 1))), axis=1)
fake = np.concatenate((np.zeros((half_batch, 1)), np.ones((half_batch, 1))), axis=1)
# Train the discriminator
d_loss_real, d_acc_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake, d_acc_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * (d_loss_real + d_loss_fake)
d_acc = 0.5 * (d_acc_real + d_acc_fake)
# ---------------------
# Train Generator
# ---------------------
# We only want to train the generator for the combined model
self.discriminator.set_trainable(False)
# Sample noise and use as generator input
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# The generator wants the discriminator to label the generated samples as valid
valid = np.concatenate((np.ones((batch_size, 1)), np.zeros((batch_size, 1))), axis=1)
# Train the generator
g_loss, g_acc = self.combined.train_on_batch(noise, valid)
# Display the progress
print ("%d [D loss: %f, acc: %.2f%%] [G loss: %f, acc: %.2f%%]" % (epoch, d_loss, 100*d_acc, g_loss, 100*g_acc))
# If at save interval => save generated image samples
if epoch % save_interval == 0:
self.save_imgs(epoch)
def save_imgs(self, epoch):
r, c = 5, 5 # Grid size
noise = np.random.normal(0, 1, (r * c, self.latent_dim))
# Generate images and reshape to image shape
gen_imgs = self.generator.predict(noise).reshape((-1, self.img_rows, self.img_cols))
# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
plt.suptitle("Generative Adversarial Network")
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt,:,:], cmap='gray')
axs[i,j].axis('off')
cnt += 1
fig.savefig("mnist_%d.png" % epoch)
plt.close()
if __name__ == '__main__':
gan = GAN()
gan.train(n_epochs=200000, batch_size=64, save_interval=400)