-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathregression.py
255 lines (227 loc) · 10.3 KB
/
regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from __future__ import print_function, division
import numpy as np
import math
from mlfromscratch.utils import normalize, polynomial_features
class l1_regularization():
""" Regularization for Lasso Regression """
def __init__(self, alpha):
self.alpha = alpha
def __call__(self, w):
return self.alpha * np.linalg.norm(w)
def grad(self, w):
return self.alpha * np.sign(w)
class l2_regularization():
""" Regularization for Ridge Regression """
def __init__(self, alpha):
self.alpha = alpha
def __call__(self, w):
return self.alpha * 0.5 * w.T.dot(w)
def grad(self, w):
return self.alpha * w
class l1_l2_regularization():
""" Regularization for Elastic Net Regression """
def __init__(self, alpha, l1_ratio=0.5):
self.alpha = alpha
self.l1_ratio = l1_ratio
def __call__(self, w):
l1_contr = self.l1_ratio * np.linalg.norm(w)
l2_contr = (1 - self.l1_ratio) * 0.5 * w.T.dot(w)
return self.alpha * (l1_contr + l2_contr)
def grad(self, w):
l1_contr = self.l1_ratio * np.sign(w)
l2_contr = (1 - self.l1_ratio) * w
return self.alpha * (l1_contr + l2_contr)
class Regression(object):
""" Base regression model. Models the relationship between a scalar dependent variable y and the independent
variables X.
Parameters:
-----------
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
"""
def __init__(self, n_iterations, learning_rate):
self.n_iterations = n_iterations
self.learning_rate = learning_rate
def initialize_weights(self, n_features):
""" Initialize weights randomly [-1/N, 1/N] """
limit = 1 / math.sqrt(n_features)
self.w = np.random.uniform(-limit, limit, (n_features, ))
def fit(self, X, y):
# Insert constant ones for bias weights
X = np.insert(X, 0, 1, axis=1)
self.training_errors = []
self.initialize_weights(n_features=X.shape[1])
# Do gradient descent for n_iterations
for i in range(self.n_iterations):
y_pred = X.dot(self.w)
# Calculate l2 loss
mse = np.mean(0.5 * (y - y_pred)**2 + self.regularization(self.w))
self.training_errors.append(mse)
# Gradient of l2 loss w.r.t w
grad_w = -(y - y_pred).dot(X) + self.regularization.grad(self.w)
# Update the weights
self.w -= self.learning_rate * grad_w
def predict(self, X):
# Insert constant ones for bias weights
X = np.insert(X, 0, 1, axis=1)
y_pred = X.dot(self.w)
return y_pred
class LinearRegression(Regression):
"""Linear model.
Parameters:
-----------
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
gradient_descent: boolean
True or false depending if gradient descent should be used when training. If
false then we use batch optimization by least squares.
"""
def __init__(self, n_iterations=100, learning_rate=0.001, gradient_descent=True):
self.gradient_descent = gradient_descent
# No regularization
self.regularization = lambda x: 0
self.regularization.grad = lambda x: 0
super(LinearRegression, self).__init__(n_iterations=n_iterations,
learning_rate=learning_rate)
def fit(self, X, y):
# If not gradient descent => Least squares approximation of w
if not self.gradient_descent:
# Insert constant ones for bias weights
X = np.insert(X, 0, 1, axis=1)
# Calculate weights by least squares (using Moore-Penrose pseudoinverse)
U, S, V = np.linalg.svd(X.T.dot(X))
S = np.diag(S)
X_sq_reg_inv = V.dot(np.linalg.pinv(S)).dot(U.T)
self.w = X_sq_reg_inv.dot(X.T).dot(y)
else:
super(LinearRegression, self).fit(X, y)
class LassoRegression(Regression):
"""Linear regression model with a regularization factor which does both variable selection
and regularization. Model that tries to balance the fit of the model with respect to the training
data and the complexity of the model. A large regularization factor with decreases the variance of
the model and do para.
Parameters:
-----------
degree: int
The degree of the polynomial that the independent variable X will be transformed to.
reg_factor: float
The factor that will determine the amount of regularization and feature
shrinkage.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
"""
def __init__(self, degree, reg_factor, n_iterations=3000, learning_rate=0.01):
self.degree = degree
self.regularization = l1_regularization(alpha=reg_factor)
super(LassoRegression, self).__init__(n_iterations,
learning_rate)
def fit(self, X, y):
X = normalize(polynomial_features(X, degree=self.degree))
super(LassoRegression, self).fit(X, y)
def predict(self, X):
X = normalize(polynomial_features(X, degree=self.degree))
return super(LassoRegression, self).predict(X)
class PolynomialRegression(Regression):
"""Performs a non-linear transformation of the data before fitting the model
and doing predictions which allows for doing non-linear regression.
Parameters:
-----------
degree: int
The degree of the polynomial that the independent variable X will be transformed to.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
"""
def __init__(self, degree, n_iterations=3000, learning_rate=0.001):
self.degree = degree
# No regularization
self.regularization = lambda x: 0
self.regularization.grad = lambda x: 0
super(PolynomialRegression, self).__init__(n_iterations=n_iterations,
learning_rate=learning_rate)
def fit(self, X, y):
X = polynomial_features(X, degree=self.degree)
super(PolynomialRegression, self).fit(X, y)
def predict(self, X):
X = polynomial_features(X, degree=self.degree)
return super(PolynomialRegression, self).predict(X)
class RidgeRegression(Regression):
"""Also referred to as Tikhonov regularization. Linear regression model with a regularization factor.
Model that tries to balance the fit of the model with respect to the training data and the complexity
of the model. A large regularization factor with decreases the variance of the model.
Parameters:
-----------
reg_factor: float
The factor that will determine the amount of regularization and feature
shrinkage.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
"""
def __init__(self, reg_factor, n_iterations=1000, learning_rate=0.001):
self.regularization = l2_regularization(alpha=reg_factor)
super(RidgeRegression, self).__init__(n_iterations,
learning_rate)
class PolynomialRidgeRegression(Regression):
"""Similar to regular ridge regression except that the data is transformed to allow
for polynomial regression.
Parameters:
-----------
degree: int
The degree of the polynomial that the independent variable X will be transformed to.
reg_factor: float
The factor that will determine the amount of regularization and feature
shrinkage.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
"""
def __init__(self, degree, reg_factor, n_iterations=3000, learning_rate=0.01, gradient_descent=True):
self.degree = degree
self.regularization = l2_regularization(alpha=reg_factor)
super(PolynomialRidgeRegression, self).__init__(n_iterations,
learning_rate)
def fit(self, X, y):
X = normalize(polynomial_features(X, degree=self.degree))
super(PolynomialRidgeRegression, self).fit(X, y)
def predict(self, X):
X = normalize(polynomial_features(X, degree=self.degree))
return super(PolynomialRidgeRegression, self).predict(X)
class ElasticNet(Regression):
""" Regression where a combination of l1 and l2 regularization are used. The
ratio of their contributions are set with the 'l1_ratio' parameter.
Parameters:
-----------
degree: int
The degree of the polynomial that the independent variable X will be transformed to.
reg_factor: float
The factor that will determine the amount of regularization and feature
shrinkage.
l1_ration: float
Weighs the contribution of l1 and l2 regularization.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
"""
def __init__(self, degree=1, reg_factor=0.05, l1_ratio=0.5, n_iterations=3000,
learning_rate=0.01):
self.degree = degree
self.regularization = l1_l2_regularization(alpha=reg_factor, l1_ratio=l1_ratio)
super(ElasticNet, self).__init__(n_iterations,
learning_rate)
def fit(self, X, y):
X = normalize(polynomial_features(X, degree=self.degree))
super(ElasticNet, self).fit(X, y)
def predict(self, X):
X = normalize(polynomial_features(X, degree=self.degree))
return super(ElasticNet, self).predict(X)