forked from karpathy/neuraltalk2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepro.py
executable file
·258 lines (206 loc) · 10.1 KB
/
prepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""
Preprocess a raw json dataset into hdf5/json files for use in data_loader.lua
Input: json file that has the form
[{ file_path: 'path/img.jpg', captions: ['a caption', ...] }, ...]
example element in this list would look like
{'captions': [u'A man with a red helmet on a small moped on a dirt road. ', u'Man riding a motor bike on a dirt road on the countryside.', u'A man riding on the back of a motorcycle.', u'A dirt path with a young person on a motor bike rests to the foreground of a verdant area with a bridge and a background of cloud-wreathed mountains. ', u'A man in a red shirt and a red hat is on a motorcycle on a hill side.'], 'file_path': u'val2014/COCO_val2014_000000391895.jpg', 'id': 391895}
This script reads this json, does some basic preprocessing on the captions
(e.g. lowercase, etc.), creates a special UNK token, and encodes everything to arrays
Output: a json file and an hdf5 file
The hdf5 file contains several fields:
/images is (N,3,256,256) uint8 array of raw image data in RGB format
/labels is (M,max_length) uint32 array of encoded labels, zero padded
/label_start_ix and /label_end_ix are (N,) uint32 arrays of pointers to the
first and last indices (in range 1..M) of labels for each image
/label_length stores the length of the sequence for each of the M sequences
The json file has a dict that contains:
- an 'ix_to_word' field storing the vocab in form {ix:'word'}, where ix is 1-indexed
- an 'images' field that is a list holding auxiliary information for each image,
such as in particular the 'split' it was assigned to.
"""
import os
import json
import argparse
from random import shuffle, seed
import string
# non-standard dependencies:
import h5py
import numpy as np
from scipy.misc import imread, imresize
def prepro_captions(imgs):
# preprocess all the captions
print('example processed tokens:')
for i, img in enumerate(imgs):
img['processed_tokens'] = []
for j, s in enumerate(img['captions']):
txt = s.lower()
txt = ''.join([x for x in s if x not in string.punctuation])
txt = txt.strip().split()
if txt:
img['processed_tokens'].append(txt)
if i < 10 and j == 0:
print(txt)
def build_vocab(imgs, params):
count_thr = params['word_count_threshold']
# count up the number of words
counts = {}
for img in imgs:
for txt in img['processed_tokens']:
for w in txt:
counts[w] = counts.get(w, 0) + 1
cw = sorted([(count, w) for w, count in counts.items()], reverse=True)
print('top words and their counts:')
print('\n'.join(map(str, cw[:20])))
# print some stats
total_words = sum(counts.values())
print('total words: {}'.format(total_words))
bad_words = [w for w, n in counts.items() if n <= count_thr]
vocab = [w for w, n in counts.items() if n > count_thr]
bad_count = sum(counts[w] for w in bad_words)
print('number of bad words: {}/{} = {:.2f}%'.format(len(bad_words), len(counts), len(bad_words) * 100.0 / len(counts)))
print('number of words in vocab would be {}'.format(len(vocab)))
print('number of UNKs: {}/{} = {:.2f}%'.format(bad_count, total_words, bad_count * 100.0 / total_words))
# lets look at the distribution of lengths as well
sent_lengths = {}
for img in imgs:
for txt in img['processed_tokens']:
nw = len(txt)
sent_lengths[nw] = sent_lengths.get(nw, 0) + 1
max_len = max(sent_lengths.keys())
print('max length sentence in raw data: {}'.format(max_len))
print('sentence length distribution (count, number of words):')
sum_len = sum(sent_lengths.values())
for i in range(max_len + 1):
print('{:2d}: {:10d} {}%'.format(i, sent_lengths.get(i, 0), sent_lengths.get(i, 0) * 100.0 / sum_len))
# lets now produce the final annotations
if bad_count:
# additional special UNK token we will use below to map infrequent words to
print('inserting the special UNK token')
vocab.append('UNK')
for img in imgs:
img['final_captions'] = []
for txt in img['processed_tokens']:
caption = [w if counts.get(w, 0) > count_thr else 'UNK' for w in txt]
img['final_captions'].append(caption)
return vocab
def assign_splits(imgs, params):
num_val = params['num_val']
num_test = params['num_test']
for i, img in enumerate(imgs):
if i < num_val:
img['split'] = 'val'
elif i < num_val + num_test:
img['split'] = 'test'
else:
img['split'] = 'train'
print('assigned {} to val, {} to test.'.format(num_val, num_test))
def encode_captions(imgs, params, wtoi):
"""
encode all captions into one large array, which will be 1-indexed.
also produces label_start_ix and label_end_ix which store 1-indexed
and inclusive (Lua-style) pointers to the first and last caption for
each image in the dataset.
"""
max_length = params['max_length']
N = len(imgs)
M = sum(len(img['final_captions']) for img in imgs) # total number of captions
label_arrays = []
label_start_ix = np.zeros(N, dtype='uint32') # note: these will be one-indexed
label_end_ix = np.zeros(N, dtype='uint32')
label_length = np.zeros(M, dtype='uint32')
caption_counter = 0
counter = 1
for i, img in enumerate(imgs):
n = len(img['final_captions'])
assert n > 0, 'error: some image has no captions {}'.format(img)
Li = np.zeros((n, max_length), dtype='uint32')
for j, s in enumerate(img['final_captions']):
label_length[caption_counter] = min(max_length, len(s)) # record the length of this sequence
caption_counter += 1
for k, w in enumerate(s):
if k < max_length:
Li[j, k] = wtoi[w]
# note: word indices are 1-indexed, and captions are padded with zeros
label_arrays.append(Li)
label_start_ix[i] = counter
label_end_ix[i] = counter + n - 1
counter += n
L = np.concatenate(label_arrays, axis=0) # put all the labels together
assert L.shape[0] == M, 'lengths don\'t match? that\'s weird'
assert np.all(label_length > 0), 'error: some caption had no words?'
print('encoded captions to array of size {!r}'.format(L.shape))
return L, label_start_ix, label_end_ix, label_length
def main(params):
imgs = json.load(open(params['input_json'], 'r'))
seed(123) # make reproducible
shuffle(imgs) # shuffle the order
# tokenization and preprocessing
prepro_captions(imgs)
imgs = [i for i in imgs if i['processed_tokens']]
# create the vocab
vocab = build_vocab(imgs, params)
itow = {i + 1: w for i, w in enumerate(vocab)} # a 1-indexed vocab translation table
wtoi = {w: i + 1 for i, w in enumerate(vocab)} # inverse table
# assign the splits
assign_splits(imgs, params)
# encode captions in large arrays, ready to ship to hdf5 file
L, label_start_ix, label_end_ix, label_length = encode_captions(imgs, params, wtoi)
# create output h5 file
N = len(imgs)
f = h5py.File(params['output_h5'], "w")
f.create_dataset("labels", dtype='uint32', data=L)
f.create_dataset("label_start_ix", dtype='uint32', data=label_start_ix)
f.create_dataset("label_end_ix", dtype='uint32', data=label_end_ix)
f.create_dataset("label_length", dtype='uint32', data=label_length)
dset = f.create_dataset("images", (N, 3, 256, 256), dtype='uint8') # space for resized images
for i, img in enumerate(imgs):
# load the image
I = imread(os.path.join(params['images_root'], img['file_path']))
try:
Ir = imresize(I, (256, 256))
except:
print('failed resizing image {} - see http://git.io/vBIE0'.format(img['file_path']))
raise
# handle grayscale input images
if len(Ir.shape) == 2:
Ir = Ir[:, :, np.newaxis]
Ir = np.concatenate((Ir, Ir, Ir), axis=2)
# and swap order of axes from (256,256,3) to (3,256,256)
Ir = Ir.transpose(2, 0, 1)
# write to h5
dset[i] = Ir
if i % 1000 == 0:
print('processing {}/{} ({:.2f}% done)'.format(i, N, i * 100.0 / N))
f.close()
print('wrote {}'.format(params['output_h5']))
# create output json file
out = {}
out['ix_to_word'] = itow # encode the (1-indexed) vocab
out['images'] = []
for i, img in enumerate(imgs):
jimg = {}
jimg['split'] = img['split']
if 'file_path' in img:
jimg['file_path'] = img['file_path'] # copy it over, might need
if 'id' in img:
jimg['id'] = img['id'] # copy over & mantain an id, if present (e.g. coco ids, useful)
out['images'].append(jimg)
json.dump(out, open(params['output_json'], 'w'))
print('wrote {}'.format(params['output_json']))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# input json
parser.add_argument('--input_json', required=True, help='input json file to process into hdf5')
parser.add_argument('--num_val', required=True, type=int, help='number of images to assign to validation data (for CV etc)')
parser.add_argument('--output_json', default='data.json', help='output json file')
parser.add_argument('--output_h5', default='data.h5', help='output h5 file')
# options
parser.add_argument('--max_length', default=16, type=int, help='max length of a caption, in number of words. captions longer than this get clipped.')
parser.add_argument('--images_root', default='', help='root location in which images are stored, to be prepended to file_path in input json')
parser.add_argument('--word_count_threshold', default=5, type=int, help='only words that occur more than this number of times will be put in vocab')
parser.add_argument('--num_test', default=0, type=int, help='number of test images (to withold until very very end)')
args = parser.parse_args()
params = vars(args) # convert to ordinary dict
print('parsed input parameters:')
print(json.dumps(params, indent=2))
main(params)