-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist-plot.py
executable file
·221 lines (181 loc) · 6.77 KB
/
mnist-plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env python3
#
# Utility for plotting MNIST hand-written digits dataset via various dimensionality reduction methods
import argparse
from multiprocessing import cpu_count
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
from keras.datasets import mnist
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE, SpectralEmbedding
import scipy.stats
from time import process_time
import pickle
# don't fail if UMAP is not installed
try:
from umap import UMAP
except:
UMAP = None
def plot_2d(data, fname):
plt.figure(figsize=(30, 20))
# scatter plot for each digit
for digit in range(10):
plt.scatter(data[digit][:, 0],
data[digit][:, 1],
s=20, label=str(digit), alpha=0.75)
plt.legend()
plt.savefig(fname)
def plot_3d(data, fname):
fig3d = plt.figure(figsize=(12, 12))
ax = fig3d.add_subplot(111, projection='3d')
# rotate view for each frame
def rot(n, ax):
ax.view_init(30, n)
# scatter plot for each digit
for digit in range(10):
ax.scatter(data[digit][:, 0],
data[digit][:, 1],
data[digit][:, 2],
s=3, label=str(digit), alpha=0.75)
# create the animation and save as video
animation.FuncAnimation(fig3d, rot, frames=360, interval=40, fargs=(ax,)).save(fname)
class MNIST_DimRed:
'Base class for dimensionality reduction plotting on MNIST dataset'
kwargs = {}
def __init__(self, **kwargs):
for key in kwargs.keys():
if key not in self.kwargs:
raise Exception(f'setting {key} not allowed for {self.reduction.__name__}')
self.kwargs.update(kwargs)
def get_cache_fname(self, samples, dims):
'Get filename of cached transformation'
kwargs_str = '_'.join([f'{k}={v}' for k, v in self.kwargs.items() if k != 'n_jobs'])
if kwargs_str:
kwargs_str = '_' + kwargs_str
return f'.cache_{self.reduction.__name__}_{samples}_dims={dims}{kwargs_str}.bin'
def _measure_performance_kfold(self, X, k):
x = []
from sys import stderr
for i in range(k):
beg = process_time()
self.reduction(n_components=2, **self.kwargs).fit_transform(X)
end = process_time()
x.append(end - beg)
print('.', flush=True, file=stderr, end='')
mean = sum(x) / k
sigma = (sum((v - mean)**2 for v in x) / (k*(k-1)))**0.5
return mean, scipy.stats.t.ppf(0.975, df=k-1)*sigma
def measure_time_performance(self, X):
print('measuring performance', flush=True)
for n in 1024, 2048, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152:
mean, plusminus = self._measure_performance_kfold(X[:n, :], 10)
print(f'{n} samples: {mean:.06f} secs', flush=True)
#print(f'{n} samples: {mean:.06f} ± {plusminus:.06f} secs', flush=True)
continue
beg = process_time()
self.reduction(n_components=2, **self.kwargs).fit_transform(X[:n, :])
end = process_time()
print(f'{n} samples: {end-beg:.06f} secs', flush=True)
def plot(self, X, y, fname, video=False):
'Do the dimensionality reduction transformation and plot the result'
dims = 3 if video else 2
cache = self.get_cache_fname(X.shape[0], dims)
try:
# in case this reduction was cached, load from cache
Xt = pickle.load(open(cache, 'rb'))
print('using cached dimensionality reduction data')
except:
# do the reduction with given arguments
print('starting dimensionality reduction')
beg = process_time()
Xt = self.reduction(n_components=dims, **self.kwargs).fit_transform(X)
end = process_time()
print(f'done in {end-beg:.06f} cputime seconds')
# cache the result
pickle.dump(Xt, open(cache, 'wb'))
# split the reduced points by digit, so that plot will give them different colors
Xt_by_digit = []
for digit in range(10):
Xt_by_digit.append(Xt[y == digit])
if video:
print('plotting 3D video animation')
plot_3d(Xt_by_digit, fname)
else:
print('plotting 2D image')
plot_2d(Xt_by_digit, fname)
class MNIST_PCA(MNIST_DimRed):
reduction = PCA
class MNIST_SpectralEmbedding(MNIST_DimRed):
reduction = SpectralEmbedding
kwargs = {
'n_jobs': cpu_count(),
'n_neighbors': 50,
}
class MNIST_TSNE(MNIST_DimRed):
reduction = TSNE
kwargs = {
'n_jobs': cpu_count(),
'init': 'random',
'learning_rate': 'auto',
'perplexity': 30.0,
}
class MNIST_UMAP(MNIST_DimRed):
reduction = UMAP
kwargs = {
'n_jobs': cpu_count(),
'n_neighbors': 15,
}
methods = [ MNIST_PCA, MNIST_SpectralEmbedding, MNIST_TSNE ]
if UMAP is not None:
methods.append(MNIST_UMAP)
methods = { m.reduction.__name__: m for m in methods }
parser = argparse.ArgumentParser(description='Utility for plotting MNIST hand-written digits dataset via various dimensionality reduction methods')
parser.add_argument('-n', '--number-of-samples', type=int, default=60000, metavar='N',
help='use only the first N samples from the dataset (default: all 60000)')
parser.add_argument('-m', '--method', choices=methods.keys(), required=True,
help='the dimensionality reduction method')
parser.add_argument('--neighbors', type=int, metavar='N',
help='for methods that support it, use N neighbors instead of the default number')
parser.add_argument('--perplexity', type=float, metavar='P',
help='for TSNE method use perplexity P instead of default (30.0)')
parser.add_argument('-v', '--video', action='store_true',
help='reduce the dimensionality to 3D instead of 2D and produce a video')
parser.add_argument('-o', '--output', type=str,
help='the output file for the image or video')
parser.add_argument('-t', '--time-performance', action='store_true',
help='measure time performance of the selected method')
def main():
args = parser.parse_args()
if args.output is None and not args.time_performance:
parser.error('either -o/--output or -t/--time-performance is required')
elif args.output is not None and args.time_performance:
parser.error('arguments -o/--output and -t/--time-performance are mutualy exclusive')
# load the dataset
(X, y), _ = mnist.load_data()
del _
if not args.time_performance:
# use only requested number of samples
X = X[:args.number_of_samples, :]
y = y[:args.number_of_samples]
print(f'using {args.number_of_samples} from MNIST dataset')
# reshape images from 28x28 matrices to 784 dimensional vectors
X = X.reshape(X.shape[0], 28 * 28)
# prepare arguments for the dimensionality reduction method
kwargs = { arg: args.__dict__[arg] for arg in ['neighbors', 'perplexity'] if args.__dict__[arg] is not None }
# load the dimensionality reduction method
try:
print(f'using the {args.method} dimensionality reduction method')
dimred = methods[args.method](**kwargs)
except Exception as e:
print(e.args[0])
exit(1)
if args.time_performance:
# measure time performance of the method
dimred.measure_time_performance(X)
else:
# plot image or video
dimred.plot(X, y, args.output, video=args.video)
print(f'output saved to file {args.output}')
if __name__ == '__main__':
main()