This repository has been archived by the owner on Jul 30, 2019. It is now read-only.
forked from huiprobable/CellsMD3D
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathInputOutput.cpp
629 lines (533 loc) · 19.4 KB
/
InputOutput.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#include "InputOutput.h"
#include "Cell.h"
#include "Constants.h"
#include "Forces.h"
#include <sys/stat.h>
#include <string>
// input and output functions
// also initializes the starting positions of cells
void CreateOutputFileLineage(int OutputID, OutputFiles& Files, bool append)
{
// create output file lineage
char lineage_name[500];
// concatenate filenames with suffix
strcpy(lineage_name,DirName);
strcat(lineage_name,"/lineage");
mkdir(lineage_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(lineage_name,"%s/%d",lineage_name,OutputID);
strcat(lineage_name,".txt");
// open files for output
Files.lineage = fopen(lineage_name, "w"); // file to store lineage
if (Files.lineage == NULL) {
fprintf(stderr, "Can't open lineage file.\n");
exit(1);
}
}
void CloseOutputFileLineage(OutputFiles& Files)
{
fclose(Files.lineage);
}
void CreateOutputFiles(int OutputID, OutputFiles& Files, bool append)
{
// create output files
char cell_name[500];
char restart_name[500];
char roughDensity_name[500];
char roughDensity1_name[500];
char roughDensity2_name[500];
char density_name[500];
char density1_name[500];
char density2_name[500];
char walldensity_name[500];
char walldensity1_name[500];
char walldensity2_name[500];
char roughHeight_name[500];
char height_name[500];
char normal_name[500];
char env_name[500];
char aga_name[500];
char wal_name[500];
// concatenate filenames with suffix
strcpy(cell_name,DirName);
strcat(cell_name,"/Cells");
mkdir(cell_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(cell_name,"%s/%d",cell_name,OutputID);
strcat(cell_name,".txt");
strcpy(restart_name,DirName);
strcat(restart_name,"/Restart");
mkdir(restart_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(restart_name,"%s/%d",restart_name,OutputID);
strcat(restart_name,".txt");
strcpy(roughDensity_name,DirName);
strcat(roughDensity_name,"/RoughDensity");
mkdir(roughDensity_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(roughDensity_name,"%s/%d",roughDensity_name,OutputID);
strcat(roughDensity_name,".txt");
strcpy(roughDensity1_name,DirName);
strcat(roughDensity1_name,"/RoughDensity1");
mkdir(roughDensity1_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(roughDensity1_name,"%s/%d",roughDensity1_name,OutputID);
strcat(roughDensity1_name,".txt");
strcpy(roughDensity2_name,DirName);
strcat(roughDensity2_name,"/RoughDensity2");
mkdir(roughDensity2_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(roughDensity2_name,"%s/%d",roughDensity2_name,OutputID);
strcat(roughDensity2_name,".txt");
strcpy(density_name,DirName);
strcat(density_name,"/Density");
mkdir(density_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(density_name,"%s/%d",density_name,OutputID);
strcat(density_name,".txt");
strcpy(density1_name,DirName);
strcat(density1_name,"/Density1");
mkdir(density1_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(density1_name,"%s/%d",density1_name,OutputID);
strcat(density1_name,".txt");
strcpy(density2_name,DirName);
strcat(density2_name,"/Density2");
mkdir(density2_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(density2_name,"%s/%d",density2_name,OutputID);
strcat(density2_name,".txt");
strcpy(walldensity_name,DirName);
strcat(walldensity_name,"/WallDensity");
mkdir(walldensity_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(walldensity_name,"%s/%d",walldensity_name,OutputID);
strcat(walldensity_name,".txt");
strcpy(walldensity1_name,DirName);
strcat(walldensity1_name,"/WallDensity1");
mkdir(walldensity1_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(walldensity1_name,"%s/%d",walldensity1_name,OutputID);
strcat(walldensity1_name,".txt");
strcpy(walldensity2_name,DirName);
strcat(walldensity2_name,"/WallDensity2");
mkdir(walldensity2_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(walldensity2_name,"%s/%d",walldensity2_name,OutputID);
strcat(walldensity2_name,".txt");
strcpy(roughHeight_name,DirName);
strcat(roughHeight_name,"/RoughHeight");
mkdir(roughHeight_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(roughHeight_name,"%s/%d",roughHeight_name,OutputID);
strcat(roughHeight_name,".txt");
strcpy(height_name,DirName);
strcat(height_name,"/Height");
mkdir(height_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(height_name,"%s/%d",height_name,OutputID);
strcat(height_name,".txt");
strcpy(normal_name,DirName);
strcat(normal_name,"/Normal");
mkdir(normal_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(normal_name,"%s/%d",normal_name,OutputID);
strcat(normal_name,".txt");
strcpy(env_name,DirName);
strcat(env_name,"/Environment");
mkdir(env_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(env_name,"%s/%d",env_name,OutputID);
strcat(env_name,".txt");
strcpy(aga_name,DirName);
strcat(aga_name,"/AgarField");
mkdir(aga_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(aga_name,"%s/%d",aga_name,OutputID);
strcat(aga_name,".txt");
strcpy(wal_name,DirName);
strcat(wal_name,"/WallField");
mkdir(wal_name,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
sprintf(wal_name,"%s/%d",wal_name,OutputID);
strcat(wal_name,".txt");
// open files for output
if (append) Files.cells = fopen(cell_name, "a"); // file for cell statistics output
else Files.cells = fopen(cell_name, "w");
if (Files.cells == NULL)
{
fprintf(stderr, "Can't open output file.\n");
exit(1);
}
Files.restart = fopen(restart_name, "w");
if (Files.restart == NULL) {
fprintf(stderr, "Can't open restart file.\n");
exit(1);
}
Files.roughDensity = fopen(roughDensity_name, "w"); // file to store roughDensity of cells
if (Files.roughDensity == NULL) {
fprintf(stderr, "Can't open roughDensity file.\n");
exit(1);
}
Files.roughDensity1 = fopen(roughDensity1_name, "w"); // file to store roughDensity1 of cells
if (Files.roughDensity1 == NULL) {
fprintf(stderr, "Can't open roughDensity1 file.\n");
exit(1);
}
Files.roughDensity2 = fopen(roughDensity2_name, "w"); // file to store roughDensity2 of cells
if (Files.roughDensity2 == NULL) {
fprintf(stderr, "Can't open roughDensity2 file.\n");
exit(1);
}
Files.density = fopen(density_name, "w"); // file to store density of cells
if (Files.density == NULL) {
fprintf(stderr, "Can't open density file.\n");
exit(1);
}
Files.density1 = fopen(density1_name, "w"); // file to store density1 of cells
if (Files.density1 == NULL) {
fprintf(stderr, "Can't open density1 file.\n");
exit(1);
}
Files.density2 = fopen(density2_name, "w"); // file to store density2 of cells
if (Files.density2 == NULL) {
fprintf(stderr, "Can't open density2 file.\n");
exit(1);
}
Files.walldensity = fopen(walldensity_name, "w"); // file to store density of cells
if (Files.walldensity == NULL) {
fprintf(stderr, "Can't open walldensity file.\n");
exit(1);
}
Files.walldensity1 = fopen(walldensity1_name, "w"); // file to store density of cells
if (Files.walldensity1 == NULL) {
fprintf(stderr, "Can't open walldensity1 file.\n");
exit(1);
}
Files.walldensity2 = fopen(walldensity2_name, "w"); // file to store density of cells
if (Files.walldensity2 == NULL) {
fprintf(stderr, "Can't open walldensity2 file.\n");
exit(1);
}
Files.roughheight = fopen(roughHeight_name, "w"); // file to store height of cells
if (Files.roughheight == NULL) {
fprintf(stderr, "Can't open roughheight file.\n");
exit(1);
}
Files.height = fopen(height_name, "w"); // file to store height of cells
if (Files.height == NULL) {
fprintf(stderr, "Can't open height file.\n");
exit(1);
}
Files.normal = fopen(normal_name, "w"); // file to store surface tension forces
if (Files.normal == NULL) {
fprintf(stderr, "Can't open surface tension file.\n");
exit(1);
}
Files.env = fopen(env_name, "w"); // file to store surface tension forces
if (Files.env == NULL) {
fprintf(stderr, "Can't open environment file.\n");
exit(1);
}
Files.aga = fopen(aga_name, "w"); // file to store surface tension forces
if (Files.aga == NULL) {
fprintf(stderr, "Can't open agar field file.\n");
exit(1);
}
Files.wal = fopen(wal_name, "w"); // file to store surface tension forces
if (Files.wal == NULL) {
fprintf(stderr, "Can't open wall field file.\n");
exit(1);
}
}
void CloseOutputFiles(OutputFiles& Files)
{
fclose(Files.cells);
fclose(Files.roughDensity);
fclose(Files.roughDensity1);
fclose(Files.roughDensity2);
fclose(Files.density);
fclose(Files.density1);
fclose(Files.density2);
fclose(Files.walldensity);
fclose(Files.walldensity1);
fclose(Files.walldensity2);
fclose(Files.roughheight);
fclose(Files.height);
fclose(Files.env);
fclose(Files.aga);
fclose(Files.wal);
fclose(Files.restart);
fclose(Files.normal);
}
int AddFirstCells(Cell* cells, double L_divide, double radius, UniformGrid& Grid, Inputs& Ini)
{
double DX = -(Ini.ColonySeparation*(Ini.ColonyNumber-1))*0.5;
double L = L_divide*0.5;
double dz = 0.0;
int icell = 0;
double thetaPos;
double thetaDir;
double radiusPos;
// double Ltotal = L+2.0*radius;
DoubleCoord v, va, p, q, cm;
bool CheckOverlap = true;
int RegenCellMax = 10000;
double dist;
DoubleCoord c1, c2;
int RandType;
for (int icolony = 0; icolony < Ini.ColonyNumber; icolony++)
{
while (icell<Ini.ColonySize)//changed by YueYan
{
int RegenCellCount = 0;
CheckOverlap = true;
while (CheckOverlap==true)
{
cells[icell].Length = L;
cells[icell].Radius = radius;
radiusPos = (float)rand()/RAND_MAX*Ini.ColonyRadius;
thetaPos = 2.0*PI*((float)rand()/RAND_MAX);
thetaDir = PI*((float)rand()/RAND_MAX-0.5);
cm = DoubleCoord(radiusPos*cos(thetaPos), radiusPos*sin(thetaPos), radius+dz);
p = DoubleCoord(L/2.0*cos(thetaDir)+cm.x, L/2.0*sin(thetaDir)+cm.y, cm.z);
q = DoubleCoord(-L/2.0*cos(thetaDir)+cm.x, -L/2.0*sin(thetaDir)+cm.y, cm.z);
v = DoubleCoord(0,0,0);
va = DoubleCoord(0,0,0);
cells[icell].Position.p = p;
cells[icell].Position.q = q;
cells[icell].Position.time_p = 0;
cells[icell].Position.time_q = 0;
cells[icell].Position.age_p = 0;
cells[icell].Position.age_q = 0;
cells[icell].Velocity = v;
cells[icell].AngularVelocity = va;
cells[icell].Ancestor = icell+1;
// cells[icell].Type = icolony+1;
//RandType = (int)2.0*((float)rand()/RAND_MAX);
//cells[icell].Type = RandType+1;
//if (icell<6)
if (icell<Ini.ColonySize*0.5)
{cells[icell].Type = 1;}
else
{cells[icell].Type = 2;}
cells[icell].GrowthRate = 0.0;
Grid.Add(icell, Grid.GetAddress(cm));
int icheck=0;
while (icheck<icell)
{
// double dist;
// dist = sqrt((cm.x-(cells[icheck].Position.p.x+
// cells[icheck].Position.q.x)*0.5)*(cm.x-
// (cells[icheck].Position.p.x+cells[icheck].Position.q.x)*0.5)
// +(cm.y-(cells[icheck].Position.p.y+cells[icheck].Position.q.y)*0.5)
// *(cm.y-(cells[icheck].Position.p.y+cells[icheck].Position.q.y)*0.5));
min_distance(cells[icell],cells[icheck],dist,c1,c2);
if (dist<(cells[icell].Radius+cells[icheck].Radius))
{
CheckOverlap=true;
printf("Cells overlap!\n");
RegenCellCount++;
break;
}
icheck++;
}
if (icheck==icell) {CheckOverlap=false;}
if (RegenCellCount==RegenCellMax)
{
printf("Unable to generate initial cells!\n");
exit(0);
}
}
icell++;
}
DX += Ini.ColonySeparation;
}
t0 = 0;
return icell;
}
int LoadCells(char* fname, Cell* cells, UniformGrid& Grid, double& t, double& dt)
{
printf("Reading cells from %s \n", fname);
FILE* FID = fopen(fname, "r");
if (FID == NULL) {
fprintf(stderr, "Can't open restart file.\n");
exit(1);
}
// obtain file size:
fseek (FID, 0, SEEK_END);
int fsize = ftell (FID);
rewind (FID);
// read time
fread(&t, sizeof(double), 1, FID);
fread(&dt, sizeof(double), 1, FID);
printf("t = %6f, dt = %6f \n", t, dt);
// read cells
int cell_count = (fsize-2*sizeof(double))/sizeof(Cell);
fread (cells, sizeof(Cell), cell_count, FID);
printf("Read %d cells \n", cell_count);
for (int icell = 0; icell<cell_count; icell++)
{
Grid.Add(icell, Grid.GetAddress(average(cells[icell].Position)));
}
printf("Added to grid \n");
fclose(FID);
return cell_count;
}
void SaveCells(FILE* FID, Cell* cells, int N_cells, double t, double dt)
{
// save cell information
rewind(FID);
int size_written = 0;
size_written = fwrite(&t, sizeof(double), 1, FID);
//MyAssert(size_written>0,"Could not write restart file");
fwrite(&dt, sizeof(double), 1, FID);
fwrite(cells, sizeof(Cell), N_cells, FID );
fflush(FID);
}
Inputs ReadParameters(char* fname)
{
FILE* FID = fopen(fname, "r");
if (FID == NULL) {
fprintf(stderr, "Can't open parameter file.\n");
exit(1);
}
char* data_string;
char var_name[100];
char var_value[100];
int fileLen = GetFileLen(FID);
char* buffer = (char*) malloc(fileLen+1);
fread(buffer, fileLen, 1, FID);
buffer[fileLen] = 0;
Inputs IniConditions;
IniConditions.ColonyNumber = 1;
IniConditions.ColonySeparation = 0;
IniConditions.ColonyRadius = 8.0;// added by YueYan
IniConditions.ColonySize =16;//added by YueYan
while(data_string = GetNextString(buffer))
{
//while (fscanf(FID, "%s %f \r", var_name, var_value) != NULL)
//while (fgets (data_string , 100 , FID) != NULL)
//{
sscanf(data_string, "%s %s", var_name, var_value);
if (strcmp(var_name,"Radius")==0)
cellRadius = atof(var_value);
else if (strcmp(var_name,"L_divide")==0)
L_divide = atof(var_value);
else if (strcmp(var_name,"k_cc")==0)
k_cc = atof(var_value);
else if (strcmp(var_name,"k_wc")==0)
k_wc = atof(var_value);
else if (strcmp(var_name,"var_L")==0)
varL = atof(var_value);
else if (strcmp(var_name,"var_angle")==0)
varAngle = atof(var_value);
else if (strcmp(var_name,"var_pos")==0)
var_pos = atof(var_value);
else if (strcmp(var_name,"Viscosity")==0)
viscosity = atof(var_value);
else if (strcmp(var_name,"Growth_Rate")==0)
maxGrowthRate = atof(var_value);
else if (strcmp(var_name,"Wall_Rough")==0)
wall_rough = atof(var_value);
else if (strcmp(var_name,"Gamma")==0)
gamma_t = atof(var_value);
else if (strcmp(var_name,"Wall_Mu")==0)
wall_mu = atof(var_value);
else if (strcmp(var_name,"Cell_Mu")==0)
cell_mu = atof(var_value);
else if (strcmp(var_name,"Density_Threshold")==0)
density_threshold = atof(var_value);
else if (strcmp(var_name,"Surface_Tension")==0)
tension = atof(var_value);
else if (strcmp(var_name,"t_max")==0)
t_max = atof(var_value);
else if (strcmp(var_name,"dt")==0)
initial_dt = atof(var_value);
else if (strcmp(var_name,"Box_x")==0)
BoxX = atoi(var_value);
else if (strcmp(var_name,"Box_y")==0)
BoxY = atoi(var_value);
else if (strcmp(var_name,"Box_z")==0)
BoxZ = atoi(var_value);
else if (strcmp(var_name,"Box_z_agar")==0)
BoxZAgar = atoi(var_value);
else if (strcmp(var_name,"Box_Dim")==0)
{
BoxX = atoi(var_value);
BoxY = BoxX;
}
else if (strcmp(var_name,"maxLevels")==0)
maxLevels = atoi(var_value);
else if (strcmp(var_name,"refinementGridHeight")==0)
refinementGridHeight = atoi(var_value);
else if (strcmp(var_name,"Output_Time")==0)
OutputTime = atof(var_value);
else if (strcmp(var_name,"Update_Time")==0)
UpdateTime = atof(var_value);
else if (strcmp(var_name,"Tortuosity")==0)
Tortuosity = atof(var_value);
else if (strcmp(var_name,"KC")==0)
KC = atof(var_value);
else if (strcmp(var_name,"C_rate")==0)
C_rate = atof(var_value);
else if (strcmp(var_name,"Diff_Colony")==0)
DiffColony = atof(var_value);
else if (strcmp(var_name,"Diff_Agar")==0)
DiffAgar = atof(var_value);
else if (strcmp(var_name,"maxCarbon")==0)
maxCarbon = atof(var_value);
else if (strcmp(var_name,"Cdt")==0)
Cdt = atof(var_value);
else if (strcmp(var_name,"ConvCrit")==0)
ConvCrit = atof(var_value);
else if (strcmp(var_name,"minIter")==0)
minIter = atof(var_value);
else if (strcmp(var_name,"maxIter")==0)
maxIter = atof(var_value);
else if (strcmp(var_name,"InterfaceCondition")==0)
InterfaceCondition = atof(var_value);
else if (strcmp(var_name,"NutrientGSI")==0)
NutrientGSI = (bool)atoi(var_value);
else if (strcmp(var_name,"Rc")==0)
Rc = atof(var_value);
else if (strcmp(var_name,"IniColonyRadius")==0)
IniConditions.ColonyRadius = atof(var_value);
else if (strcmp(var_name,"IniColonySize")==0)
IniConditions.ColonySize = atof(var_value);
else if (strcmp(var_name,"Delta_H")==0)
DH = atof(var_value);
else if (strcmp(var_name,"MaintenanceRate")==0)
Maintenance_rate = atof(var_value);
else if (strcmp(var_name,"FilterLen")==0)
FilterLen = atoi(var_value);
else if (strcmp(var_name,"NumColonies")==0)
IniConditions.ColonyNumber = atoi(var_value);
else if (strcmp(var_name,"ColonySeparation")==0)
IniConditions.ColonySeparation = atof(var_value);
else if (strcmp(var_name,"MaxCells")==0)
maxCells = atoi(var_value);
else
{
printf("Unknown parameter: %s \n", var_name);
fflush(stdout);
assert(false);
exit(-1);
}
}
//cellRadius = cellRadius*exp((maxGrowthRate-1)/3*log(3)/log(2));
//L_divide = L_divide*exp((maxGrowthRate-1)/3*log(3)/log(2));
//cellRadius = cellRadius*exp((maxGrowthRate-1)/3);
//L_divide = L_divide*exp((maxGrowthRate-1)/3);
fclose(FID);
return IniConditions;
}
int GetFileLen(FILE* myFile)
{
fseek (myFile, 0, SEEK_END);
int size = ftell(myFile);
fseek(myFile, 0, SEEK_SET);
return size;
}
char* GetNextString(char*& buffer)
{
char* out = buffer;
if (!*buffer) return NULL; // return on empty string
while(! (*buffer == 0x0A || *buffer == 0x0D || *buffer == 0x00) ) // 0x0A and 0x0D
buffer++; // skip forward until we find the start of the next line (10/13/0)
if (*buffer) *buffer++ = 0; // if we ended on 10/13 end the string and move to the next char
if(*buffer == 0x0A) buffer++; // on windows skip the 10 after the 13
return out;
}
void Output(FILE* FID, int ID, double t, const Cell& cell, const Tensor T)
{
fprintf(FID,"%4.4f %d %d %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4E %4.4E %4.4E %4.4E %4.4E %4.4E %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %d %d %d\n",
t, ID, cell.Type, cell.Position.p.x, cell.Position.p.y, cell.Position.p.z, cell.Position.q.x, cell.Position.q.y, cell.Position.q.z, cell.Length, T.xx, T.yy, T.zz, cell.Velocity.x, cell.Velocity.y, cell.Velocity.z, cell.GrowthRate, cell.DynFric.x, cell.DynFric.y, cell.DynFric.z, cell.StaFric.x, cell.StaFric.y, cell.StaFric.z, cell.Position.time_p, cell.Position.time_q, cell.Position.age_p, cell.Position.age_q, cell.Ancestor);
}
void Output(FILE* FID, int ID, double t, const Cell& cell, const DoubleCoord F)
{
fprintf(FID,"%4.4f %d %d %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4E %4.4E %4.4E %4.4E %4.4E %4.4E %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %d %d %d\n",
t, ID, cell.Type, cell.Position.p.x, cell.Position.p.y, cell.Position.p.z, cell.Position.q.x, cell.Position.q.y, cell.Position.q.z, cell.Length, F.x, F.y, F.z, cell.Velocity.x, cell.Velocity.y, cell.Velocity.z, cell.GrowthRate, cell.DynFric.x, cell.DynFric.y, cell.DynFric.z, cell.StaFric.x, cell.StaFric.y, cell.StaFric.z, cell.Position.time_p, cell.Position.time_q, cell.Position.age_p, cell.Position.age_q, cell.Ancestor);
}