-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrainer.py
443 lines (366 loc) · 22.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#-*- coding:utf-8 -*-
import os
import time
import torch
import datetime
import torch.nn as nn
from torchvision.utils import save_image
from losses import PerceptualLoss, GANLoss, MultiscaleRecLoss
from utils import Logger, denorm, ImagePool
from models import Generator, Discriminator
from metrics.NIMA.CalcNIMA import calc_nima
from metrics.CalcPSNR import calc_psnr
from metrics.CalcSSIM import calc_ssim
from tqdm import *
from data_loader import InputFetcher
class Trainer(object):
def __init__(self, loaders, args):
# data loader
self.loaders = loaders
# Model configuration.
self.args = args
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Directories.
self.model_save_path = os.path.join(args.save_root_dir, args.version, args.model_save_path)
self.sample_path = os.path.join(args.save_root_dir, args.version, args.sample_path)
self.log_path = os.path.join(args.save_root_dir, args.version, args.log_path)
self.val_result_path = os.path.join(args.save_root_dir, args.version, args.val_result_path)
# Build the model and tensorboard.
self.build_model()
if self.args.use_tensorboard:
self.build_tensorboard()
def train(self):
""" Train UEGAN ."""
self.fetcher = InputFetcher(self.loaders.ref)
self.fetcher_val = InputFetcher(self.loaders.val)
self.train_steps_per_epoch = len(self.loaders.ref)
self.model_save_step = int(self.args.model_save_epoch * self.train_steps_per_epoch)
# set nima, psnr, ssim global parameters
if self.args.is_test_nima:
self.best_nima_epoch, self.best_nima = 0, 0.0
if self.args.is_test_psnr_ssim:
self.best_psnr_epoch, self.best_psnr = 0, 0.0
self.best_ssim_epoch, self.best_ssim = 0, 0.0
# set loss functions
self.criterionPercep = PerceptualLoss()
self.criterionIdt = MultiscaleRecLoss(scale=3, rec_loss_type=self.args.idt_loss_type, multiscale=True)
self.criterionGAN = GANLoss(self.args.adv_loss_type, tensor=torch.cuda.FloatTensor)
# start from scratch or trained models
if self.args.pretrained_model:
start_step = int(self.args.pretrained_model * self.train_steps_per_epoch)
self.load_pretrained_model(self.args.pretrained_model)
else:
start_step = 0
# start training
print("======================================= start training =======================================")
self.start_time = time.time()
total_steps = int(self.args.total_epochs * self.train_steps_per_epoch)
self.val_start_steps = int(self.args.num_epochs_start_val * self.train_steps_per_epoch)
self.val_each_steps = int(self.args.val_each_epochs * self.train_steps_per_epoch)
print("=========== start to iteratively train generator and discriminator ===========")
pbar = tqdm(total=total_steps, desc='Train epoches', initial=start_step)
for step in range(start_step, total_steps):
########## model train
self.G.train()
self.D.train()
########## data iter
input = next(self.fetcher)
self.real_raw, self.real_exp, self.real_raw_name = input.img_raw, input.img_exp, input.img_name
########## forward
self.fake_exp = self.G(self.real_raw)
self.fake_exp_store = self.fake_exp_pool.query(self.fake_exp)
########## update D
self.d_optimizer.zero_grad()
real_exp_preds = self.D(self.real_exp)
fake_exp_preds = self.D(self.fake_exp_store.detach())
d_loss = self.criterionGAN(real_exp_preds, fake_exp_preds, None, None, for_discriminator=True)
if self.args.adv_input:
input_preds = self.D(self.real_raw)
d_loss += self.criterionGAN(real_exp_preds, input_preds, None, None, for_discriminator=True)
d_loss.backward()
self.d_optimizer.step()
self.d_loss = d_loss.item()
########## update G
self.g_optimizer.zero_grad()
real_exp_preds = self.D(self.real_exp)
fake_exp_preds = self.D(self.fake_exp)
g_adv_loss = self.args.lambda_adv * self.criterionGAN(real_exp_preds, fake_exp_preds, None, None, for_discriminator=False)
self.g_adv_loss = g_adv_loss.item()
g_loss = g_adv_loss
g_percep_loss = self.args.lambda_percep * self.criterionPercep((self.fake_exp+1.)/2., (self.real_raw+1.)/2.)
self.g_percep_loss = g_percep_loss.item()
g_loss += g_percep_loss
self.real_exp_idt = self.G(self.real_exp)
g_idt_loss = self.args.lambda_idt * self.criterionIdt(self.real_exp_idt, self.real_exp)
self.g_idt_loss = g_idt_loss.item()
g_loss += g_idt_loss
g_loss.backward()
self.g_optimizer.step()
self.g_loss = g_loss.item()
### print info and save models
self.print_info(step, total_steps, pbar)
### logging using tensorboard
self.logging(step)
### validation
self.model_validation(step)
### learning rate update
if step % self.train_steps_per_epoch == 0:
current_epoch = step // self.train_steps_per_epoch
self.lr_scheduler_g.step(epoch=current_epoch)
self.lr_scheduler_d.step(epoch=current_epoch)
for param_group in self.g_optimizer.param_groups:
pbar.write("====== Epoch: {:>3d}/{}, Learning rate(lr) of Encoder(E) and Generator(G): [{}], ".format(((step + 1) // self.train_steps_per_epoch), self.args.total_epochs, param_group['lr']), end='')
for param_group in self.d_optimizer.param_groups:
pbar.write("Learning rate (lr) of Discriminator(D): [{}] ======".format(param_group['lr']))
pbar.update(1)
pbar.set_description(f"Train epoch %.2f" % ((step+1.0)/self.train_steps_per_epoch))
self.val_best_results()
pbar.write("=========== Complete training ===========")
pbar.close()
def logging(self, step):
self.loss = {}
self.images = {}
self.loss['D/Total'] = self.d_loss
self.loss['G/Total'] = self.g_loss
self.loss['G/adv_loss'] = self.g_adv_loss
self.loss['G/percep_loss'] = self.g_percep_loss
self.loss['G/idt_loss'] = self.g_idt_loss
self.images['Train_realExpIdt/realExp_realExpIdt'] = torch.cat([denorm(self.real_exp.cpu()), denorm(self.real_exp_idt.detach().cpu())], 3)
self.images['Train_compare/realRaw_fakeExp_realExp'] = torch.cat([denorm(self.real_raw.cpu()), denorm(self.fake_exp.detach().cpu()), denorm(self.real_exp.cpu())], 3)
self.images['Train_fakeExp/fakeExp'] = denorm(self.fake_exp.detach().cpu())
self.images['Train_fakeExpStore/fakeExpStore'] = denorm(self.fake_exp_store.detach().cpu())
if (step+1) % self.args.log_step == 0:
if self.args.use_tensorboard:
for tag, value in self.loss.items():
self.logger.scalar_summary(tag, value, step+1)
for tag, image in self.images.items():
self.logger.images_summary(tag, image, step+1)
def print_info(self, step, total_steps, pbar):
current_epoch = (step+1) / self.train_steps_per_epoch
if (step + 1) % self.args.info_step == 0:
elapsed_num = time.time() - self.start_time
elapsed = str(datetime.timedelta(seconds=elapsed_num))
pbar.write("Elapse:{:>.12s}, D_Step:{:>6d}/{}, G_Step:{:>6d}/{}, D_loss:{:>.4f}, G_loss:{:>.4f}, G_percep_loss:{:>.4f}, G_adv_loss:{:>.4f}, G_idt_loss:{:>.4f}".format(elapsed, step + 1, total_steps, (step + 1), total_steps, self.d_loss, self.g_loss, self.g_percep_loss, self.g_adv_loss, self.g_idt_loss))
# sample images
if (step + 1) % self.args.sample_step == 0:
for i in range(0, self.real_raw.size(0)):
save_imgs = torch.cat([denorm(self.real_raw.data)[i:i + 1,:,:,:], denorm(self.fake_exp.data)[i:i + 1,:,:,:], denorm(self.real_exp.data)[i:i + 1,:,:,:]], 3)
save_image(save_imgs, os.path.join(self.sample_path, '{:s}_{:0>3.2f}_{:0>2d}_realRaw_fakeExp_realExp.png'.format(self.real_raw_name[i], current_epoch, i)))
# save models
if (step + 1) % self.model_save_step == 0:
if self.args.parallel:
if torch.cuda.device_count() > 1:
checkpoint = {
"G_net": self.G.module.state_dict(),
"D_net": self.D.module.state_dict(),
"epoch": current_epoch,
"g_optimizer": self.g_optimizer.state_dict(),
"d_optimizer": self.d_optimizer.state_dict(),
"lr_scheduler_g": self.lr_scheduler_g.state_dict(),
"lr_scheduler_d": self.lr_scheduler_d.state_dict()
}
else:
checkpoint = {
"G_net": self.G.state_dict(),
"D_net": self.D.state_dict(),
"epoch": current_epoch,
"g_optimizer": self.g_optimizer.state_dict(),
"d_optimizer": self.d_optimizer.state_dict(),
"lr_scheduler_g": self.lr_scheduler_g.state_dict(),
"lr_scheduler_d": self.lr_scheduler_d.state_dict()
}
torch.save(checkpoint, os.path.join(self.model_save_path, '{}_{}_{}.pth'.format(self.args.version, self.args.adv_loss_type, current_epoch)))
pbar.write("======= Save model checkpoints into {} ======".format(self.model_save_path))
def model_validation(self, step):
if (step + 1) > self.val_start_steps:
if (step + 1) % self.val_each_steps == 0:
val = {}
current_epoch = (step + 1) / self.train_steps_per_epoch
val_save_path = self.val_result_path + '/' + 'validation_' + str(current_epoch)
val_compare_save_path = self.val_result_path + '/' + 'validation_compare_' + str(current_epoch)
val_start = 0
val_total_steps = len(self.loaders.val)
if not os.path.exists(val_save_path):
os.makedirs(val_save_path)
if not os.path.exists(val_compare_save_path):
os.makedirs(val_compare_save_path)
self.G.eval()
pbar = tqdm(total=(val_total_steps - val_start), desc='Validation epoches', position=val_start)
pbar.write("============================== Start validation ==============================")
with torch.no_grad():
for val_step in range(val_start, val_total_steps):
input = next(self.fetcher_val)
val_real_raw, val_name = input.img_raw, input.img_name
val_fake_exp = self.G(val_real_raw)
for i in range(0, denorm(val_real_raw.data).size(0)):
save_imgs = denorm(val_fake_exp.data)[i:i + 1,:,:,:]
save_image(save_imgs, os.path.join(val_save_path, '{:s}_{:0>3.2f}_valFakeExp.png'.format(val_name[i], current_epoch)))
save_imgs_compare = torch.cat([denorm(val_real_raw.data)[i:i + 1,:,:,:], denorm(val_fake_exp.data)[i:i + 1,:,:,:]], 3)
save_image(save_imgs_compare, os.path.join(val_compare_save_path, '{:s}_{:0>3.2f}_valRealRaw_valFakeExp.png'.format(val_name[i], current_epoch)))
elapsed = time.time() - self.start_time
elapsed = str(datetime.timedelta(seconds=elapsed))
if val_step % self.args.info_step == 0:
pbar.write("=== Elapse:{}, Save {:>3d}-th val_fake_exp images into {} ===".format(elapsed, val_step, val_save_path))
val['val/valFakeExp'] = denorm(val_fake_exp.detach().cpu())
val['val_compare/valRealRaw_valFakeExp'] = torch.cat([denorm(val_real_raw.cpu()), denorm(val_fake_exp.detach().cpu())], 3)
pbar.update(1)
if self.args.use_tensorboard:
for tag, images in val.items():
self.logger.images_summary(tag, images, val_step + 1)
pbar.close()
if self.args.is_test_nima:
self.nima_result_save_path = './results/nima_val_results/'
curr_nima = calc_nima(val_save_path, self.nima_result_save_path, current_epoch)
if self.best_nima < curr_nima:
self.best_nima = curr_nima
self.best_nima_epoch = current_epoch
print("====== Avg. NIMA: {:>.4f} ======".format(curr_nima))
if self.args.is_test_psnr_ssim:
self.psnr_save_path = './results/psnr_val_results/'
curr_psnr = calc_psnr(val_save_path, self.args.val_label_dir, self.psnr_save_path, current_epoch)
if self.best_psnr < curr_psnr:
self.best_psnr = curr_psnr
self.best_psnr_epoch = current_epoch
print("====== Avg. PSNR: {:>.4f} dB ======".format(curr_psnr))
self.ssim_save_path = './results/ssim_val_results/'
curr_ssim = calc_ssim(val_save_path, self.args.val_label_dir, self.ssim_save_path, current_epoch)
if self.best_ssim < curr_ssim:
self.best_ssim = curr_ssim
self.best_ssim_epoch = current_epoch
print("====== Avg. SSIM: {:>.4f} ======".format(curr_ssim))
torch.cuda.empty_cache()
time.sleep(2)
def val_best_results(self):
if self.args.is_test_psnr_ssim:
if not os.path.exists(self.psnr_save_path):
os.makedirs(self.psnr_save_path)
psnr_result = self.psnr_save_path + 'PSNR_total_results_epoch_avgpsnr.csv'
psnrfile = open(psnr_result, 'a+')
psnrfile.write('Best epoch: ' + str(self.best_psnr_epoch) + ',' + str(round(self.best_psnr, 6)) + '\n')
psnrfile.close()
if not os.path.exists(self.ssim_save_path):
os.makedirs(self.ssim_save_path)
ssim_result = self.ssim_save_path + 'SSIM_total_results_epoch_avgssim.csv'
ssimfile = open(ssim_result, 'a+')
ssimfile.write('Best epoch: ' + str(self.best_ssim_epoch) + ',' + str(round(self.best_ssim, 6)) + '\n')
ssimfile.close()
if self.args.is_test_nima:
nima_total_result = self.nima_result_save_path + 'NIMA_total_results_epoch_mean_std.csv'
totalfile = open(nima_total_result, 'a+')
totalfile.write('Best epoch:' + str(self.best_nima_epoch) + ',' + str(round(self.best_nima, 6)) + '\n')
totalfile.close()
"""define some functions"""
def build_model(self):
"""Create a generator and a discriminator."""
self.G = Generator(self.args.g_conv_dim, self.args.g_norm_fun, self.args.g_act_fun, self.args.g_use_sn).to(self.device)
self.D = Discriminator(self.args.d_conv_dim, self.args.d_norm_fun, self.args.d_act_fun, self.args.d_use_sn, self.args.adv_loss_type).to(self.device)
if self.args.parallel:
self.G.to(self.args.gpu_ids[0])
self.D.to(self.args.gpu_ids[0])
self.G = nn.DataParallel(self.G, self.args.gpu_ids)
self.D = nn.DataParallel(self.D, self.args.gpu_ids)
print("=== Models have been created ===")
# print network
if self.args.is_print_network:
self.print_network(self.G, 'Generator')
self.print_network(self.D, 'Discriminator')
# init network
if self.args.init_type:
self.init_weights(self.G, init_type=self.args.init_type, gain=0.02)
self.init_weights(self.D, init_type=self.args.init_type, gain=0.02)
# optimizer
if self.args.optimizer_type == 'adam':
# Adam optimizer
self.g_optimizer = torch.optim.Adam(params=self.G.parameters(), lr=self.args.g_lr, betas=[self.args.beta1, self.args.beta2], weight_decay=0.0001)
self.d_optimizer = torch.optim.Adam(params=self.D.parameters(), lr=self.args.d_lr, betas=[self.args.beta1, self.args.beta2], weight_decay=0.0001)
elif self.args.optimizer_type == 'rmsprop':
# RMSprop optimizer
self.g_optimizer = torch.optim.RMSprop(params=self.G.parameters(), lr=self.args.g_lr, alpha=self.args.alpha)
self.d_optimizer = torch.optim.RMSprop(params=self.D.parameters(), lr=self.args.d_lr, alpha=self.args.alpha)
else:
raise NotImplementedError("=== Optimizer [{}] is not found ===".format(self.args.optimizer_type))
# learning rate decay
if self.args.lr_decay:
def lambda_rule(epoch):
return 1.0 - max(0, epoch + 1 - self.args.lr_num_epochs_decay) / self.args.lr_decay_ratio
self.lr_scheduler_g = torch.optim.lr_scheduler.LambdaLR(self.g_optimizer, lr_lambda=lambda_rule)
self.lr_scheduler_d = torch.optim.lr_scheduler.LambdaLR(self.d_optimizer, lr_lambda=lambda_rule)
print("=== Set learning rate decay policy for Generator(G) and Discriminator(D) ===")
self.fake_exp_pool = ImagePool(self.args.pool_size)
def init_weights(self, net, init_type='kaiming', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
torch.nn.init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
torch.nn.init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'xavier_uniform':
torch.nn.init.xavier_uniform_(m.weight.data, gain=1.0)
elif init_type == 'kaiming':
torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'kaiming_uniform':
torch.nn.init.kaiming_uniform_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
torch.nn.init.orthogonal_(m.weight.data, gain=gain)
elif init_type == 'none': # uses pytorch's default init method
m.reset_parameters()
else:
raise NotImplementedError('Initialization method [{}] is not implemented'.format(init_type))
if hasattr(m, 'bias') and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
if hasattr(m, 'weight') and m.weight is not None:
torch.nn.init.normal_(m.weight.data, 1.0, gain)
if hasattr(m, 'bias') and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find('InstanceNorm2d') != -1:
if hasattr(m, 'weight') and m.weight is not None:
torch.nn.init.normal_(m.weight.data, 1.0, gain)
if hasattr(m, 'bias') and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
print("=== Initialize network with [{}] ===".format(init_type))
net.apply(init_func)
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
# print(model)
print("=== The number of parameters of the above model [{}] is [{}] or [{:>.4f}M] ===".format(name, num_params, num_params / 1e6))
def load_pretrained_model(self, resume_epochs):
checkpoint_path = os.path.join(self.model_save_path, '{}_{}_{}.pth'.format(self.args.version, self.args.adv_loss_type, resume_epochs))
if torch.cuda.is_available():
# save on GPU, load on GPU
checkpoint = torch.load(checkpoint_path)
self.G.load_state_dict(checkpoint['G_net'])
self.D.load_state_dict(checkpoint['D_net'])
self.g_optimizer.load_state_dict(checkpoint['g_optimizer'])
self.d_optimizer.load_state_dict(checkpoint['d_optimizer'])
self.lr_scheduler_g.load_state_dict(checkpoint['lr_scheduler_g'])
self.lr_scheduler_d.load_state_dict(checkpoint['lr_scheduler_d'])
else:
# save on GPU, load on CPU
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
self.G.load_state_dict(checkpoint['G_net'])
self.D.load_state_dict(checkpoint['D_net'])
self.g_optimizer.load_state_dict(checkpoint['g_optimizer'])
self.d_optimizer.load_state_dict(checkpoint['d_optimizer'])
self.lr_scheduler_g.load_state_dict(checkpoint['lr_scheduler_g'])
self.lr_scheduler_d.load_state_dict(checkpoint['lr_scheduler_d'])
print("=========== loaded trained models (epochs: {})! ===========".format(resume_epochs))
def build_tensorboard(self):
"""Build a tensorboard logger."""
self.logger = Logger(self.log_path)
def identity_loss(self, idt_loss_type):
if idt_loss_type == 'l1':
criterion = nn.L1Loss()
return criterion
elif idt_loss_type == 'smoothl1':
criterion = nn.SmoothL1Loss()
return criterion
elif idt_loss_type == 'l2':
criterion = nn.MSELoss()
return criterion
else:
raise NotImplementedError("=== Identity loss type [{}] is not implemented. ===".format(self.args.idt_loss_type))