-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain.py
60 lines (49 loc) · 2.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#-*-coding:utf-8-*-
import os
import argparse
from trainer import Trainer
from tester import Tester
from utils import create_folder, setup_seed
from config import get_config
import torch
from munch import Munch
from data_loader import get_train_loader, get_test_loader
def main(args):
# for fast training.
torch.backends.cudnn.benchmark = True
setup_seed(args.seed)
# create directories if not exist.
create_folder(args.save_root_dir, args.version, args.model_save_path)
create_folder(args.save_root_dir, args.version, args.sample_path)
create_folder(args.save_root_dir, args.version, args.log_path)
create_folder(args.save_root_dir, args.version, args.val_result_path)
create_folder(args.save_root_dir, args.version, args.test_result_path)
if args.mode == 'train':
loaders = Munch(ref=get_train_loader(root=args.train_img_dir,
img_size=args.image_size,
resize_size=args.resize_size,
batch_size=args.train_batch_size,
shuffle=args.shuffle,
num_workers=args.num_workers,
drop_last=args.drop_last),
val=get_test_loader(root=args.val_img_dir,
batch_size=args.val_batch_size,
shuffle=True,
num_workers=args.num_workers))
trainer = Trainer(loaders, args)
trainer.train()
elif args.mode == 'test':
loaders = Munch(tes=get_test_loader(root=args.test_img_dir,
img_size=args.test_img_size,
batch_size=args.val_batch_size,
shuffle=True,
num_workers=args.num_workers))
tester = Tester(loaders, args)
tester.test()
else:
raise NotImplementedError('Mode [{}] is not found'.format(args.mode))
if __name__ == '__main__':
args = get_config()
# if args.is_print_network:
# print(args)
main(args)