-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
224 lines (175 loc) · 7.33 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""
Author: Edoardo Altamura (October 2022)
Contact: [email protected]
Tools to access data presented in the paper:
Altamura et al. (2022)
https://ui.adsabs.harvard.edu/abs/2022arXiv221009978A/abstract
`EAGLE-like simulation models do not solve the entropy core problem in groups
and clusters of galaxies`
Includes two generic functions to retrieve data from hdf5 files and specific
classes to load data used to generate the figures.
"""
import h5py
import numpy as np
from itertools import product
from unyt import Solar_Mass, Gyr, dimensionless
def load_dict_from_hdf5(filename: str) -> dict:
"""
Given the path to an HDF5 file, returns a dictionary with the same structure as
the HDF5 file and the data loaded in memory.
Args:
filename (str): Path of the HDF5 file
Returns:
dict: Outputs the dictionary with the same structure as the HDF5 file
"""
with h5py.File(filename, "r") as h5file:
return _recursively_load_dict_contents_from_group(h5file, "/")
def _recursively_load_dict_contents_from_group(h5file: h5py.File, path: str) -> dict:
"""
Auxiliary function to `load_dict_from_hdf5`, used for recursively load the
fields from the HDF5 file into the dictionary.
Args:
h5file (h5py.File): Data handle to the h5py.File
path (str): Path of the HDF5 file
Returns:
dict: Partially loaded dictionary, updated recursively
"""
ans = {}
for key, item in h5file[path].items():
if isinstance(item, h5py._hl.dataset.Dataset):
ans[key] = item[...]
elif isinstance(item, h5py._hl.group.Group):
ans[key] = _recursively_load_dict_contents_from_group(
h5file, path + key + "/"
)
return ans
class DataContainer(object):
redshift_names = ["redshift_0", "redshift_1"]
halo_names = [
"VR18_+1res",
"VR18_-8res",
"VR2915_+1res",
"VR2915_-8res",
]
model_names = [
"AGNdT8",
"AGNdT9",
"Bipolar",
"Isotropic",
"Random",
"Ref",
"alpha0",
"noAGN",
"noMetalCooling",
"noSN",
]
def __init__(self) -> None:
pass
def bind_dict_to_object(self, dictionary: dict):
"""
Auxiliary function to parse the data structure from a dictionary to the attribute
structure of the current class instance.
Example:
Instead of accessing a dataset as object.data['group_name']['dataset_name'],
the same dataset will be accessible as object.data.group_name.dataset_name.
The + sign is converted into _plus_ and - sign into _minus_ to protect the
python operator bindings when using this mode.
Args:
dictionary (dict): The dictionary containing data to bind to the instance
of the class
"""
if isinstance(dictionary, list):
dictionary = [self.bind_dict_to_object(x) for x in dictionary]
if not isinstance(dictionary, dict):
return dictionary
class AuxiliaryClass(object):
pass
obj = AuxiliaryClass()
for key in dictionary:
k_name = key.lower() if key == "True" else key
k_name = k_name.replace("+", "_plus_").replace("-", "_minus_")
k_name = k_name.replace("__", "_")
setattr(
obj, k_name, self.bind_dict_to_object(dictionary[key]),
)
return obj
class RefModelExtendedSample(DataContainer):
def __init__(
self,
filepath: str = "./ref_model_entended_sample.hdf5",
bind_data_to_class: bool = True,
) -> None:
data = load_dict_from_hdf5(filepath)
for resolution_key in data.keys():
data[resolution_key]["entropy_profile"] *= dimensionless
data[resolution_key]["gas_fraction"] *= dimensionless
data[resolution_key]["m500"] *= Solar_Mass
data[resolution_key]["radial_bin_centres"] *= dimensionless
data[resolution_key]["star_fraction"] *= dimensionless
if bind_data_to_class:
self.data = self.bind_dict_to_object(data)
else:
self.data = data
class PropertiesReducedSample(DataContainer):
def __init__(
self,
filepath: str = "./properties_reduced_sample.hdf5",
bind_data_to_class: bool = True,
) -> None:
data = load_dict_from_hdf5(filepath)
iterator_fields = product(
self.redshift_names, self.halo_names, self.model_names
)
for redshift_name, halo_name, model_name in iterator_fields:
# Skip incomplete datasets, e.g. VR18_+1res for alternative models
try:
_ = data[redshift_name][halo_name][model_name]
except KeyError:
continue
nested_group = data[redshift_name][halo_name][model_name]
for dataset_name in nested_group.keys():
# Do not convert strings, e.g. filepaths
if nested_group[dataset_name].dtype != float:
continue
# Convert from np.ndarray(float) to simple float
data[redshift_name][halo_name][model_name][dataset_name] = float(
nested_group[dataset_name],
)
data[redshift_name][halo_name][model_name]["entropy_core"] *= dimensionless
data[redshift_name][halo_name][model_name]["fbary"] *= dimensionless
data[redshift_name][halo_name][model_name]["fgas"] *= dimensionless
data[redshift_name][halo_name][model_name]["fstar"] *= dimensionless
data[redshift_name][halo_name][model_name]["m500"] *= Solar_Mass
data[redshift_name][halo_name][model_name]["mbh"] *= Solar_Mass
data[redshift_name][halo_name][model_name]["mgas"] *= Solar_Mass
data[redshift_name][halo_name][model_name]["mstar_100kpc"] *= Solar_Mass
data[redshift_name][halo_name][model_name]["ssfr_100kpc"] /= Gyr
if bind_data_to_class:
self.data = self.bind_dict_to_object(data)
else:
self.data = data
class ProfilesReducedSample(DataContainer):
def __init__(
self,
filepath: str = "./profiles_reduced_sample.hdf5",
bind_data_to_class: bool = True,
) -> None:
data = load_dict_from_hdf5(filepath)
for halo_model in data.keys():
for dataset_name in data[halo_model]:
data[halo_model][dataset_name] *= dimensionless
# Split dictionary by object name
for halo_name in self.halo_names:
data[halo_name] = dict()
for key in data.keys():
preable_halo_name = f"{halo_name:s}_"
if key.startswith(preable_halo_name):
data[halo_name][key.lstrip(preable_halo_name)] = data[key]
if bind_data_to_class:
self.data = self.bind_dict_to_object(data)
else:
self.data = data
if __name__ == "__main__":
RefModelExtendedSample()
PropertiesReducedSample()
ProfilesReducedSample()