-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
318 lines (229 loc) · 10.2 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import streamlit as st
from pydantic import BaseModel
from statelit import StateManager
class SimpleExample(BaseModel):
a: float = 10.0
b: float = 10.0
msg: str = "Hello, world!"
state_manager_simple = StateManager(SimpleExample)
if st.session_state.get("json_indent_size") is not None:
state_manager_simple.statelit_model.json_indent_size = st.session_state["json_indent_size"]
state_manager_simple.sync()
st.title("Statelit Demo - Basic Concepts")
st.markdown("This demo shows basic concepts about how dashboards are managed by Statelit.")
st.header("Why Statelit?")
st.markdown("""\
- 💻 **Simpler code:** Just define a Pydantic model, and you get all your widgets for free.
- 💾 **Save your work:** Save interesting things you see in an exploratory dashboard that you can come back to later.
- 🔗 **Sharing:** Share interesting insights with your colleagues by giving them a JSON.
- 👩🔧 **Pydantic is useful:** If you build an API that uses Pydantic, interoperating your schema with a dashboard is
a great way to explore how your app works, especially for machine learning and other quantitative applications.
Statelit makes this much easier.
""")
st.markdown("---")
st.header("Part 1 - State representations")
st.markdown(
"State is represented and validated using Pydantic."
"\n\n"
"The class definition of a `BaseModel` determines data types and all fields managed by Statelit."
" This `Type[BaseModel]` is passed into `state_manager = Statelit(some_model_type_here)`."
" The resulting object controls the management of the state of a Pydantic model object,"
" located at `state_manager.pydantic_obj`."
"\n\n"
"It sounds very abstract, but it's quite simple in action:"
)
st.code("""\
import streamlit as st
from pydantic import BaseModel
from statelit import StateManager
class SimpleExample(BaseModel):
a: float = 10.0
b: float = 10.0
msg: str = "Hello, world!"
state_manager = StateManager(SimpleExample)
""", language="python")
st.markdown(
"There are two main ways to interact with the state:"
"\n- via widgets for each field"
"\n- via a JSON that controls the whole model"
"\n"
"Most changes to a widget will automatically update all other associated states,"
" with the exception of `'lazy'` states, which pull new updates but do not push out updates."
"\n\n"
"Play around below to get a feel for how it works:"
)
st.markdown("")
col1, col2 = st.columns(2)
with col1:
st.code(">>> state = state_manager.form()", language="python")
state = state_manager_simple.form()
with col2:
if st.session_state.get("show_text_area_state_as") == "Replicated":
st.code(">>> state_manager.text_area()")
s = state_manager_simple.text_area(
help="I will try my best to stay in sync with the object state.",
key_suffix="replicated_text",
height=150
)
else:
st.code(">>> state_manager.lazy_text_area()")
state_manager_simple.lazy_text_area(
help="I won't modify the object state unless you click 'Apply'.",
key_suffix="lazy_text",
height=150
)
with st.expander("JSON Options"):
st.radio(
"State Type",
options=["Lazy", "Replicated"],
key="show_text_area_state_as",
)
st.slider(label="Indent Size", min_value=0, max_value=8, step=2, value=2, key="json_indent_size",
help="Default is 2")
st.code(f">>> state_manager.statelit_model.json_indent_size = {st.session_state['json_indent_size']}")
st.markdown("")
st.markdown("The widgets will stay synced with the Pydantic model object as you make changes above:")
st.code(f"""\
>>> print(state)
{state!r}
>>> print(type(state))
{type(state)!r}
>>> print(state.a * state.b)
{state.a * state.b}
>>> print(state.msg)
{state.msg}
""", language="python")
st.markdown("---")
st.header("Part 2 - Data types")
st.markdown("""\
Statelit supports a lot of data types, and more supported data types are being added as Statelit grows.
Check the documentation for a list of all data types.
The purpose of this section is to go a little crazy and show you everything Statelit can do.
**Note that the majority of the code is just defining the types, and `Statelit` takes up just a couple lines.**
Statelit makes writing interactive dashboards much easier.
""")
with st.expander("Code", expanded=False):
st.code(r"""from datetime import date
from decimal import Decimal
from enum import Enum
from typing import Dict
from typing import List
from typing import Optional
from typing import Set
from typing import Tuple
import streamlit as st
from pydantic import BaseModel
from pydantic import Field
from pydantic import conint
from pydantic.color import Color
from statelit import StateManager
class SmallModel(BaseModel):
a: int = 100
PositiveInt = conint(gt=0)
class ExampleEnum(int, Enum):
FOO = 1
BAR = 2
BAZ = 3
class BigExample(BaseModel):
class Config:
streamlit_label_generator = lambda x: x.replace("_", " ").title() # noqa: #731
flag: bool = True
example_enum_field: ExampleEnum = 2
# You can also use the statelit.types.DateRange type directly.
date_range_field: Tuple[date, date] = ["2022-03-14", "2022-07-04"]
json_data: Dict[str, List[int]] = {"some_key": [4, 5, 6]}
constrained_int: int = Field(default=3, ge=0, le=10, description="Must be 0 to 10.")
optional_positive_int_range: Optional[Tuple[PositiveInt, PositiveInt]] = (1, 100)
# There are *two* ways to do multiselects: Dict[Any, bool] and Set[Enum].
multiselect_dict: Dict[str, bool] = {"a": False, "b": True, "c": False, "d": False}
multiselect_enum: Set[ExampleEnum] = {ExampleEnum.FOO}
very_precise_decimal: Decimal = Decimal("1.23456")
undefined_int: Optional[int] = Field(
default=None,
description="It is _not_ recommended that you leave default values undefined,"
" e.g. `some_field: Optional[int] = None`, or simply `some_field: Optional[int]`."
" That said, Statelit will still try to assign a reasonable default value"
" if the default is `None`."
)
large_optional_text: str = "Including a new line in the default\ncauses a `text_area` to appear"
very_large_text: Optional[str] = Field(
title="Very Large Text Area",
default="Statelit hooks into a lot of Pydantic internals."
"\nCheck out all the neat things you can do with Statelit!",
streamlit_widget=lambda **kwargs: st.text_area(height=200, **kwargs),
streamlit_disabled=True,
description="Find this description of the Pydantic field in the 'help' text for this widget!"
)
some_date: date = date(2015, 3, 14)
some_color: Color = "olive"
some_pydantic_model: Optional[SmallModel] = SmallModel()
big_state_manager = StateManager(BigExample)
st.text("Let's generate a big form! 🙂")
big_state = big_state_manager.form()""")
with st.expander("Form"):
from datetime import date
from decimal import Decimal
from enum import Enum
from typing import Dict
from typing import List
from typing import Optional
from typing import Set
from typing import Tuple
import streamlit as st
from pydantic import BaseModel
from pydantic import Field
from pydantic import conint
from pydantic.color import Color
from statelit import StateManager
class SmallModel(BaseModel):
a: int = 100
PositiveInt = conint(gt=0)
class ExampleEnum(int, Enum):
FOO = 1
BAR = 2
BAZ = 3
class BigExample(BaseModel):
class Config:
streamlit_label_generator = lambda x: x.replace("_", " ").title() # noqa: #731
flag: bool = True
example_enum_field: ExampleEnum = 2
# You can also use the statelit.types.DateRange type directly.
date_range_field: Tuple[date, date] = ["2022-03-14", "2022-07-04"]
json_data: Dict[str, List[int]] = {"some_key": [4, 5, 6]}
constrained_int: int = Field(default=3, ge=0, le=10, description="Must be 0 to 10.")
optional_positive_int_range: Optional[Tuple[PositiveInt, PositiveInt]] = (1, 100)
# There are *two* ways to do multiselects: Dict[Any, bool] and Set[Enum].
multiselect_dict: Dict[str, bool] = {"a": False, "b": True, "c": False, "d": False}
multiselect_enum: Set[ExampleEnum] = {ExampleEnum.FOO}
very_precise_decimal: Decimal = Decimal("1.23456")
undefined_int: Optional[int] = Field(
default=None,
description="It is _not_ recommended that you leave default values undefined,"
" e.g. `some_field: Optional[int] = None`, or simply `some_field: Optional[int]`."
" That said, Statelit will still try to assign a reasonable default value"
" if the default is `None`."
)
large_optional_text: str = "Including a new line in the default\ncauses a `text_area` to appear"
very_large_text: Optional[str] = Field(
title="Very Large Text Area",
default="Statelit hooks into a lot of Pydantic internals."
"\nCheck out all the neat things you can do with Statelit!",
streamlit_widget=lambda **kwargs: st.text_area(height=200, **kwargs),
streamlit_disabled=True,
description="Find this description of the Pydantic field in the 'help' text for this widget!"
)
some_date: date = date(2015, 3, 14)
some_color: Color = "olive"
some_pydantic_model: Optional[SmallModel] = SmallModel()
big_state_manager = StateManager(BigExample)
st.text("Let's generate a big form! 🙂")
big_state = big_state_manager.form()
with st.expander("State (pretty)"):
st.markdown("The `.code()` method calls `st.code()` and represents the JSON with syntax highlighting.")
big_state_manager.code()
with st.expander("State (lazy text area)"):
st.markdown("`DateRange` type and `Optional[T]` do not currently work with `lazy_text_area()`."
" Sorry about that.")
big_state_manager.lazy_text_area(height=300)
with st.expander("State (eager text area)"):
big_state_manager.text_area(height=300)