-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy paththreshold.py
341 lines (279 loc) · 13.1 KB
/
threshold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# -*- coding: utf-8 -*-
"""
Created on 18-5-30 下午4:55
Modified on 23-5-19
"""
from __future__ import print_function
import os
import cv2
from models import *
import torch
import numpy as np
import time
from config import Config
from torch.nn import DataParallel
# Reads the LFW pair list file and returns a list of image paths.
def get_lfw_list(pair_list):
# Open the LFW pair list file in read mode
with open(pair_list, 'r') as fd:
# Read all the lines in the file
pairs = fd.readlines()
# Initialize an empty list to store unique data entries
data_list = []
# Iterate over each line (pair) in the pair list
for pair in pairs:
# Split the line into individual elements
splits = pair.split()
# Check if the first element of the pair is not already in the data list
if splits[0] not in data_list:
# Add the first element to the data list
data_list.append(splits[0])
# Check if the second element of the pair is not already in the data list
if splits[1] not in data_list:
# Add the second element to the data list
data_list.append(splits[1])
# Return the list of unique data entries
return data_list
# Loads and preprocesses an image from the given image path.
def load_image(img_path):
# Read the image from the given image path using OpenCV (grayscale mode)
image = cv2.imread(img_path, 0)
# Check if the image is not loaded successfully
if image is None:
return None
# Stack the original image and the flipped image along the depth axis to create a 3-channel image
image = np.dstack((image, np.fliplr(image)))
# Transpose the image dimensions to match the expected input format of the model (channels-first)
image = image.transpose((2, 0, 1))
# Add an additional dimension to represent the batch size (set to 1)
image = image[:, np.newaxis, :, :]
# Convert the image data type to float32 and perform in-place normalization
image = image.astype(np.float32, copy=False)
image -= 127.5
image /= 127.5
# Return the preprocessed image
return image
# Extracts features from a list of images using the given model.
def get_features(model, test_list, batch_size=10):
images = None
features = None
cnt = 0
for i, img_path in enumerate(test_list):
# Load the image from the image path
image = load_image(img_path)
# Check if the image loading was unsuccessful
if image is None:
print('read {} error'.format(img_path))
# Concatenate the loaded image with the existing images
if images is None:
images = image
else:
images = np.concatenate((images, image), axis=0)
# Check if the batch size condition is met or if it is the last image
if images.shape[0] % batch_size == 0 or i == len(test_list) - 1:
cnt += 1
# Convert the image data to a PyTorch tensor and move it to the CPU device
data = torch.from_numpy(images)
data = data.to(torch.device("cpu"))
# Perform forward pass on the model to obtain the output features
output = model(data)
output = output.data.numpy()
# Split the output features into two halves
fe_1 = output[::2]
fe_2 = output[1::2]
# Concatenate the two halves of features horizontally
feature = np.hstack((fe_1, fe_2))
# print(feature.shape)
# Concatenate the extracted feature with the existing features
if features is None:
features = feature
else:
features = np.vstack((features, feature))
# Reset the images variable for the next batch
images = None
return features, cnt
# Loads the pretrained weights of the model from the given path.
def load_model(model, model_path):
# Get the state dictionary of the model
model_dict = model.state_dict()
# Load the pretrained weights from the specified model path
pretrained_dict = torch.load(model_path, map_location=torch.device('cpu'))
# Filter the pretrained weights dictionary to match the keys in the model state dictionary
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# Update the model state dictionary with the filtered pretrained weights
model_dict.update(pretrained_dict)
# Load the updated state dictionary into the model
model.load_state_dict(model_dict)
# Creates a dictionary mapping image paths to their corresponding features.
def get_feature_dict(test_list, features):
# Initialize an empty dictionary
fe_dict = {}
# Iterate over the test_list and features in parallel using enumerate
for i, each in enumerate(test_list):
# key = each.split('/')[1]
# Assign the i-th feature to the corresponding image path in the dictionary
fe_dict[each] = features[i]
# Return the dictionary mapping image paths to features
return fe_dict
# Calculates the cosine similarity between two vectors.
def cosin_metric(x1, x2):
return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2))
# Calculates the Euclidean distance between two vectors.
def euclidean_metric(x1, x2):
return np.linalg.norm(x1 - x2)
# Calculates the Manhattan distance between two vectors.
def manhattan_metric(x1, x2):
return np.sum(np.abs(x1 - x2))
# Calculates the accuracy and threshold for a given set of scores and ground truth labels.
def cal_accuracy(y_score, y_true):
# Convert the scores and labels to NumPy arrays
y_score = np.asarray(y_score)
y_true = np.asarray(y_true)
# Initialize variables to store the best accuracy and corresponding threshold
best_acc = 0
best_th = 0
# Iterate over the scores
for i in range(len(y_score)):
# Get the threshold value for the current iteration
th = y_score[i]
# Generate binary predictions based on the threshold
y_test = (y_score >= th)
# Calculate the accuracy by comparing the predictions with the ground truth labels
acc = np.mean((y_test == y_true).astype(int))
# Check if the current accuracy is better than the previous best accuracy
if acc > best_acc:
best_acc = acc
best_th = th
# Return the best accuracy and corresponding threshold as a tuple
return (best_acc, best_th)
# Tests the performance of the cosine similarity metric on the LFW dataset.
def test_performance_cos(fe_dict, pair_list):
# Open the pair list file
with open(pair_list, 'r') as fd:
pairs = fd.readlines()
# Initialize lists to store similarity scores and labels
sims = []
labels = []
# Iterate over pairs in the pair list
for pair in pairs:
splits = pair.split()
fe_1 = fe_dict[splits[0]] # Get the feature vector for the first image
fe_2 = fe_dict[splits[1]] # Get the feature vector for the second image
label = int(splits[2]) # Get the ground truth label
sim = cosin_metric(fe_1, fe_2) # Calculate the cosine similarity between the feature vectors
# Append the similarity score and label to the respective lists
sims.append(sim)
labels.append(label)
# Calculate the accuracy and threshold using the similarity scores and labels
acc, th = cal_accuracy(sims, labels)
# Return the accuracy and threshold as a tuple
return acc, th
# Tests the performance of the Euclidean distance metric on the LFW dataset.
def test_performance_euc(fe_dict, pair_list):
# Open the pair list file
with open(pair_list, 'r') as fd:
pairs = fd.readlines()
# Initialize lists to store similarity scores and labels
sims = []
labels = []
# Iterate over pairs in the pair list
for pair in pairs:
splits = pair.split()
fe_1 = fe_dict[splits[0]] # Get the feature vector for the first image
fe_2 = fe_dict[splits[1]] # Get the feature vector for the second image
label = int(splits[2]) # Get the ground truth label
sim = euclidean_metric(fe_1, fe_2) # Calculate the euclidean similarity between the feature vectors
# Append the similarity score and label to the respective lists
sims.append(sim)
labels.append(label)
# Calculate the accuracy and threshold using the similarity scores and labels
acc, th = cal_accuracy(sims, labels)
# Return the accuracy and threshold as a tuple
return acc, th
# Tests the performance of the Manhattan distance metric on the LFW dataset.
def test_performance_man(fe_dict, pair_list):
# Open the pair list file
with open(pair_list, 'r') as fd:
pairs = fd.readlines()
# Initialize lists to store similarity scores and labels
sims = []
labels = []
# Iterate over pairs in the pair list
for pair in pairs:
splits = pair.split()
fe_1 = fe_dict[splits[0]] # Get the feature vector for the first image
fe_2 = fe_dict[splits[1]] # Get the feature vector for the second image
label = int(splits[2]) # Get the ground truth label
sim = manhattan_metric(fe_1, fe_2) # Calculate the manhattan similarity between the feature vectors
# Append the similarity score and label to the respective lists
sims.append(sim)
labels.append(label)
# Calculate the accuracy and threshold using the similarity scores and labels
acc, th = cal_accuracy(sims, labels)
# Return the accuracy and threshold as a tuple
return acc, th
# Performs LFW face verification using the cosine similarity metric.
def lfw_test_cos(model, img_paths, identity_list, compare_list, batch_size):
s = time.time()
features, cnt = get_features(model, img_paths, batch_size=batch_size)
print(features.shape)
t = time.time() - s
print('total time is {}, average time is {}'.format(t, t / cnt))
fe_dict = get_feature_dict(identity_list, features)
acc, th = test_performance_cos(fe_dict, compare_list)
print('lfw face verification accuracy:', acc, 'threshold:', th)
return acc, th
# Performs LFW face verification using the Euclidean distance metric.
def lfw_test_euc(model, img_paths, identity_list, compare_list, batch_size):
s = time.time()
features, cnt = get_features(model, img_paths, batch_size=batch_size)
print(features.shape)
t = time.time() - s
print('total time is {}, average time is {}'.format(t, t / cnt))
fe_dict = get_feature_dict(identity_list, features)
acc, th = test_performance_euc(fe_dict, compare_list)
print('lfw face verification accuracy:', acc, 'threshold:', th)
return acc, th
# Performs LFW face verification using the Manhattan distance metric.
def lfw_test_man(model, img_paths, identity_list, compare_list, batch_size):
s = time.time()
features, cnt = get_features(model, img_paths, batch_size=batch_size)
print(features.shape)
t = time.time() - s
print('total time is {}, average time is {}'.format(t, t / cnt))
fe_dict = get_feature_dict(identity_list, features)
acc, th = test_performance_man(fe_dict, compare_list)
print('lfw face verification accuracy:', acc, 'threshold:', th)
return acc, th
if __name__ == '__main__':
# Create an instance of the Config class to store configuration parameters.
opt = Config()
if opt.backbone == 'resnet18':
model = resnet_face18(opt.use_se)
elif opt.backbone == 'resnet34':
model = resnet34()
elif opt.backbone == 'resnet50':
model = resnet50()
# Based on the specified backbone in the configuration, create an instance of the corresponding face recognition model.
# Wrap the model with DataParallel for parallel processing (if supported).
model = DataParallel(model)
# Load the pretrained weights of the model from the specified model path.
load_model(model, opt.test_model_path)
# Move the model to the CPU device.
model.to(torch.device("cpu"))
# Get the list of identity names from the LFW pair list.
identity_list = get_lfw_list(opt.lfw_test_list)
# Generate the list of image paths by concatenating the LFW root path with each identity name.
img_paths = [os.path.join(opt.lfw_root, each) for each in identity_list]
# Set the model to evaluation mode.
model.eval()
# Perform LFW face verification using the cosine similarity metric and print the accuracy and threshold.
cos_acc, cos_th = lfw_test_cos(model, img_paths, identity_list, opt.lfw_test_list, opt.test_batch_size)
# Perform LFW face verification using the Euclidean distance metric and print the accuracy and threshold.
euc_acc, euc_th = lfw_test_euc(model, img_paths, identity_list, opt.lfw_test_list, opt.test_batch_size)
# Perform LFW face verification using the Manhattan distance metric and print the accuracy and threshold.
man_acc, man_th = lfw_test_man(model, img_paths, identity_list, opt.lfw_test_list, opt.test_batch_size)
# Print the thresholds for each distance metric.
print("Cosine Threshold : ", cos_th)
print("Euclidean Threshold : ", euc_th)
print("Manhanttan Threshold : ", man_th)