-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtrain.py
139 lines (111 loc) · 4.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import copy
import time
from helpers import get_device, one_hot_embedding
from losses import relu_evidence
def train_model(
model,
dataloaders,
num_classes,
criterion,
optimizer,
scheduler=None,
num_epochs=25,
device=None,
uncertainty=False,
):
since = time.time()
if not device:
device = get_device()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
losses = {"loss": [], "phase": [], "epoch": []}
accuracy = {"accuracy": [], "phase": [], "epoch": []}
evidences = {"evidence": [], "type": [], "epoch": []}
for epoch in range(num_epochs):
print("Epoch {}/{}".format(epoch, num_epochs - 1))
print("-" * 10)
# Each epoch has a training and validation phase
for phase in ["train", "val"]:
if phase == "train":
print("Training...")
model.train() # Set model to training mode
else:
print("Validating...")
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0.0
correct = 0
# Iterate over data.
for i, (inputs, labels) in enumerate(dataloaders[phase]):
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == "train"):
if uncertainty:
y = one_hot_embedding(labels, num_classes)
y = y.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(
outputs, y.float(), epoch, num_classes, 10, device
)
match = torch.reshape(torch.eq(preds, labels).float(), (-1, 1))
acc = torch.mean(match)
evidence = relu_evidence(outputs)
alpha = evidence + 1
u = num_classes / torch.sum(alpha, dim=1, keepdim=True)
total_evidence = torch.sum(evidence, 1, keepdim=True)
mean_evidence = torch.mean(total_evidence)
mean_evidence_succ = torch.sum(
torch.sum(evidence, 1, keepdim=True) * match
) / torch.sum(match + 1e-20)
mean_evidence_fail = torch.sum(
torch.sum(evidence, 1, keepdim=True) * (1 - match)
) / (torch.sum(torch.abs(1 - match)) + 1e-20)
else:
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == "train":
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if scheduler is not None:
if phase == "train":
scheduler.step()
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
losses["loss"].append(epoch_loss)
losses["phase"].append(phase)
losses["epoch"].append(epoch)
accuracy["accuracy"].append(epoch_acc.item())
accuracy["epoch"].append(epoch)
accuracy["phase"].append(phase)
print(
"{} loss: {:.4f} acc: {:.4f}".format(
phase.capitalize(), epoch_loss, epoch_acc
)
)
# deep copy the model
if phase == "val" and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print(
"Training complete in {:.0f}m {:.0f}s".format(
time_elapsed // 60, time_elapsed % 60
)
)
print("Best val Acc: {:4f}".format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
metrics = (losses, accuracy)
return model, metrics