-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomide_rate.R
113 lines (102 loc) · 5.38 KB
/
homide_rate.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#=================================================================================#
# Homicide rate #
# January 2018 #
# Author: David Mitre Becerril #
# Objective: estimate the homicide rate per 100,000 inhabitants per municipality #
# in Mexico. #
# Note: the sum of the homicides per municipality could differ from the national #
# sum due to those with unspecified municipality. The "homicide.rate" #
# function can be applied from 2010 onwards. #
# Data sources that can be used with this function #
# http://en.www.inegi.org.mx/proyectos/registros/vitales/mortalidad/ #
# http://catalogo.datos.gob.mx/en/dataset/proyecciones-de-la-poblacion-de-mexico #
#=================================================================================#
# Indicator formula #
# Rate=(A/B)*100,000, where #
# A=Total homicides per municipality of ocurrency #
# B=Total population per municipality #
# An homicide is a death classify with the code X85 to Y09 under the International#
# Classification of Diseases 10th revision (ICD-10). #
#=================================================================================#
#homicide.rate(INEGI, CONAPO, year)
#INEGI: dataframe of the mortality data (DEFUN.dbf) retrieved from INEGI.
#CONAPO: dataframe of the municipality population data (baseprymunMX.csv) retrieved from CONAPO.
#integer value={2010, 2011, 2012, ...}
#output: a data frame with the following variables:
#cve: code of the municipality
#mun: name of the municipality
#state: code of the state
#state2: name of the state
#year: year of the data
#homicides: homicides per municipality
#pob: population per municipality
#rate: homicide rate per municipality
#Function to estimate homicide rate
homicide.rate<-function(INEGI, CONAPO, year){
#Packages needed to run
packages<-c("plyr")
if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
install.packages(setdiff(packages, rownames(installed.packages())))
}
lapply(packages, require, character.only=TRUE)
#Population by municipality
names(CONAPO)<-c("row", "date", "ent", "id_ent", "mun", "id_mun", "cve", "sex", "age", "pob")
CONAPO$cve<-as.numeric(as.character(CONAPO$id_ent*1000)) + as.numeric(as.character(CONAPO$id_mun))
POB<-aggregate(pob~cve, CONAPO[CONAPO$date%in%year,], sum)
POB2<-data.frame(unique(CONAPO[,c("cve", "mun")]))
#Dummy variable of deaths by homicide
code<-c("X85", "X86", "X87", "X88", "X89", "X90", "X91", "X92", "X93", "X94", "X95", "X96",
"X97", "X98","X99", "Y00", "Y01", "Y02", "Y03", "Y04", "Y05", "Y06", "Y07", "Y08","Y09")
INEGI$hom<-ifelse(substr(INEGI$CAUSA_DEF,1,3)%in%code, 1, 0)
#Create variable of municipalities by code
INEGI$cve2<-as.numeric(as.character(INEGI$ENT_OCURR))*1000 + as.numeric(as.character(INEGI$MUN_OCURR))
#Aggregate homicides by municipality
HOM<-aggregate(hom~cve2, INEGI, sum) #every row of the dataset is an homicide
names(HOM)<-c("cve", "homicides")
#Join datasets
HOM<-join(POB, HOM, by="cve")
HOM<-join(HOM, POB2, by="cve")
#Estimate homicides rate
HOM$homicides<-ifelse(is.na(HOM$homicides), 0, HOM$homicides)
HOM$rate<-(HOM$homicides/HOM$pob)*100000
#Format and create state and year variables
HOM$state<-as.numeric(ifelse(HOM$cve>10000, substr(HOM$cve,1,2), substr(HOM$cve,1,1)))
HOM$year<-year
HOM$state2<-HOM$state
HOM$state2[HOM$state2== 0 ]<- 'National'
HOM$state2[HOM$state2== 1 ]<- 'Aguascalientes'
HOM$state2[HOM$state2== 2 ]<- 'Baja California'
HOM$state2[HOM$state2== 3 ]<- 'Baja California Sur'
HOM$state2[HOM$state2== 4 ]<- 'Campeche'
HOM$state2[HOM$state2== 5 ]<- 'Coahuila'
HOM$state2[HOM$state2== 6 ]<- 'Colima'
HOM$state2[HOM$state2== 7 ]<- 'Chiapas'
HOM$state2[HOM$state2== 8 ]<- 'Chihuahua'
HOM$state2[HOM$state2== 9 ]<- 'Mexico City'
HOM$state2[HOM$state2== 10 ]<- 'Durango'
HOM$state2[HOM$state2== 11 ]<- 'Guanajuato'
HOM$state2[HOM$state2== 12 ]<- 'Guerrero'
HOM$state2[HOM$state2== 13 ]<- 'Hidalgo'
HOM$state2[HOM$state2== 14 ]<- 'Jalisco'
HOM$state2[HOM$state2== 15 ]<- 'Mexico'
HOM$state2[HOM$state2== 16 ]<- 'Michoacan'
HOM$state2[HOM$state2== 17 ]<- 'Morelos'
HOM$state2[HOM$state2== 18 ]<- 'Nayarit'
HOM$state2[HOM$state2== 19 ]<- 'Nuevo Leon'
HOM$state2[HOM$state2== 20 ]<- 'Oaxaca'
HOM$state2[HOM$state2== 21 ]<- 'Puebla'
HOM$state2[HOM$state2== 22 ]<- 'Queretaro'
HOM$state2[HOM$state2== 23 ]<- 'Quintana Roo'
HOM$state2[HOM$state2== 24 ]<- 'San Luis Potosi'
HOM$state2[HOM$state2== 25 ]<- 'Sinaloa'
HOM$state2[HOM$state2== 26 ]<- 'Sonora'
HOM$state2[HOM$state2== 27 ]<- 'Tabasco'
HOM$state2[HOM$state2== 28 ]<- 'Tamaulipas'
HOM$state2[HOM$state2== 29 ]<- 'Tlaxcala'
HOM$state2[HOM$state2== 30 ]<- 'Veracruz'
HOM$state2[HOM$state2== 31 ]<- 'Yucatan'
HOM$state2[HOM$state2== 32 ]<- 'Zacatecas'
#Output of the function
HOM<-HOM[,c("cve", "mun", "state", "state2", "year", "homicides", "pob", "rate")]
return(HOM)
}