forked from sankalpchap1/SPRING23-DATA-MINING
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustering_problem.R
376 lines (322 loc) · 12.6 KB
/
clustering_problem.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Clusering Problem - 2
current_path = rstudioapi::getActiveDocumentContext()$path
setwd(dirname(current_path ))
rm(list=ls())
library(rstudioapi)
library(dplyr)
library(cluster)
library(NbClust)
library(ggplot2)
library("factoextra")
library(mclust)
library(doParallel)
library(dbscan)
# setup parallel backend
ncores = parallel::detectCores()
cl = makeCluster(ncores)
registerDoParallel(cl)
set.seed(1234)
load("cluster_data.RData")
num_rows = nrow(y)
num_cols = ncol(y)
scaled_y = scale(y)
# Multivariate normality check
alpha <- (num_cols-2)/(2*num_cols)
beta <- (num_rows-num_cols-3)/(2*(num_rows-num_cols-1))
a = num_cols/2
b = (num_rows-num_cols-1)/2
install.packages("MVN")
library(MVN)
mvn(y) # performs Shapiro-Wilk test for multivariate normality
# Plot beta and u quantiles
u = mahalanobis(scaled_y, colMeans(scaled_y), cov(scaled_y))
u = u^2
pr = (1:num_rows - alpha)/(num_rows - alpha - beta + 1)
quantiles = qbeta(pr, a, b)
data_frame = data.frame(u=sort(u), quantiles=quantiles)
ggplot(data_frame, aes(x=quantiles, y=u)) +
geom_line() +
labs(x="beta quantile", y="u quantile") +
ggtitle("Checking Multivariate Normality") +
theme(plot.title = element_text(hjust = 0.5))
# Implementing Feature Selection using PCA
pca <- prcomp(scaled_y, center = TRUE, scale. = TRUE)
# Calculate the cumulative proportion of variance explained by each principal component
variance_explained <- cumsum(pca$sdev^2 / sum(pca$sdev^2))
# Identify the number of principal components required to explain 90% or 99% of the variance
n_components_90 <- which(variance_explained >= 0.9)[1]
n_components_95 <- which(variance_explained >= 0.95)[1]
n_components_99 <- which(variance_explained >= 0.99)[1]
y_pca_90 <- pca$x[,1:n_components_90]
y_pca_95 <- pca$x[,1:n_components_95]
y_pca_99 <- pca$x[,1:n_components_99]
pca_indices = c(n_components_90, n_components_95, n_components_99)
pca_subsets_y = lapply(pca_indices, function(x) pca$x[,1:x])
# kmeans
get_scores_kmeans = function(x,kmax,iter.max=100,nstart=20)
{
ch = numeric(length=kmax-1)
silwid = numeric(length=kmax-1)
n = nrow(x)
for (k in 2:kmax) {
# Apply Kmeans
a = kmeans(x,k,iter.max=iter.max,nstart=nstart)
# Calculate Silhouette Score for each K
ss <- silhouette(a$cluster, dist(x))
silwid[k-1] <- mean(ss[, 3])
# Calculate CH Score for each K
w = a$tot.withinss
b = a$betweenss
ch[k-1] = (b/(k-1))/(w/(n-k))
}
return(list(k=2:kmax,sil = silwid, ch=ch))
}
kmeans_scores = lapply(pca_subsets_y, get_scores_kmeans, kmax=20)
# Plotting CH and silhoutte results for Kmeans
score_90 <- kmeans_scores[[1]]
score_95 <- kmeans_scores[[2]]
score_99 <- kmeans_scores[[3]]
# Extract variables for plotting
k_90 <- score_90$k
ch_val_90 <- score_90$ch
sil_score_90 <- score_90$sil
k_95 <- score_95$k
ch_val_95 <- score_95$ch
sil_score_95 <- score_95$sil
k_99 <- score_99$k
ch_val_99 <- score_99$ch
sil_score_99 <- score_99$sil
# Find the maximum values for ch_val and sil_score
max_ch_val_90 <- k_90[which.max(ch_val_90)]
max_sil_score_90 <- k_90[which.max(sil_score_90)]
max_ch_val_95 <- k_95[which.max(ch_val_95)]
max_sil_score_95 <- k_95[which.max(sil_score_95)]
max_ch_val_99 <- k_99[which.max(ch_val_99)]
max_sil_score_99 <- k_99[which.max(sil_score_99)]
# Create the first plot for ch_val
plot(k_90, ch_val_90, type = "o", pch = 16, col = "blue",
ylim = range(ch_val_90, ch_val_99), xlab = "k values", ylab = "ch_val",
main = "ch_val vs k values")
lines(k_95, ch_val_95, type = "o", pch = 16, col = "black")
lines(k_99, ch_val_99, type = "o", pch = 16, col = "red")
points(max_ch_val_90, ch_val_90[which.max(ch_val_90)], pch = 16, col = "green")
points(max_ch_val_95, ch_val_95[which.max(ch_val_95)], pch = 16, col = "green")
points(max_ch_val_99, ch_val_99[which.max(ch_val_99)], pch = 16, col = "green")
abline(v = max_ch_val_90, col = "black", lty = 2)
abline(v = max_ch_val_95, col = "black", lty = 2)
abline(v = max_ch_val_99, col = "black", lty = 2)
legend("topright", legend = c("90", "95", "99"), col = c("blue","black", "red"), pch = c(16, 16, 16))
# Create the second plot for sil_score
plot(k_90, sil_score_90, type = "o", pch = 16, col = "blue",
ylim = range(sil_score_90, sil_score_99), xlab = "k values", ylab = "sil_score",
main = "sil_score vs k values")
lines(k_99, sil_score_95, type = "o", pch = 16, col = "red")
lines(k_99, sil_score_99, type = "o", pch = 16, col = "red")
points(max_sil_score_90, sil_score_90[which.max(sil_score_90)], pch = 16, col = "green")
points(max_sil_score_95, sil_score_95[which.max(sil_score_95)], pch = 16, col = "green")
points(max_sil_score_99, sil_score_99[which.max(sil_score_99)], pch = 16, col = "green")
abline(v = max_sil_score_90, col = "black", lty = 2)
abline(v = max_sil_score_95, col = "black", lty = 2)
abline(v = max_sil_score_99, col = "black", lty = 2)
legend("topright", legend = c("90", "95", "99"), col = c("blue","black", "red"), pch = c(16, 16, 16))
# NB Clustering
nbc_90 <- NbClust(y_pca_90, distance = "euclidean", min.nc = 2,
max.nc = 6, method = "complete", index = "all")
nbc_99 <- NbClust(y_pca_99, distance = "euclidean", min.nc = 2,
max.nc = 6, method = "complete", index = "all")
stopCluster(cl)
fviz_nbclust <- function (x, FUNcluster = NULL, method = c("silhouette", "wss",
"gap_stat"), diss = NULL, k.max = 10, nboot = 100, verbose = interactive(),
barfill = "steelblue", barcolor = "steelblue", linecolor = "steelblue",
print.summary = TRUE, ...)
{
set.seed(123)
if (k.max < 2)
stop("k.max must bet > = 2")
method = match.arg(method)
if (!inherits(x, c("data.frame", "matrix")) & !("Best.nc" %in%
names(x)))
stop("x should be an object of class matrix/data.frame or ",
"an object created by the function NbClust() [NbClust package].")
if (inherits(x, "list") & "Best.nc" %in% names(x)) {
best_nc <- x$Best.nc
if (any(class(best_nc) == "numeric") )
print(best_nc)
else if (any(class(best_nc) == "matrix") )
.viz_NbClust(x, print.summary, barfill, barcolor)
}
else if (is.null(FUNcluster))
stop("The argument FUNcluster is required. ", "Possible values are kmeans, pam, hcut, clara, ...")
else if (!is.function(FUNcluster)) {
stop("The argument FUNcluster should be a function. ",
"Check if you're not overriding the specified function name somewhere.")
}
else if (method %in% c("silhouette", "wss")) {
if (is.data.frame(x))
x <- as.matrix(x)
if (is.null(diss))
diss <- stats::dist(x)
v <- rep(0, k.max)
if (method == "silhouette") {
for (i in 2:k.max) {
clust <- FUNcluster(x, i, ...)
v[i] <- .get_ave_sil_width(diss, clust$cluster)
}
}
else if (method == "wss") {
for (i in 1:k.max) {
clust <- FUNcluster(x, i, ...)
v[i] <- .get_withinSS(diss, clust$cluster)
}
}
df <- data.frame(clusters = as.factor(1:k.max), y = v,
stringsAsFactors = TRUE)
ylab <- "Total Within Sum of Square"
if (method == "silhouette")
ylab <- "Average silhouette width"
p <- ggpubr::ggline(df, x = "clusters", y = "y", group = 1,
color = linecolor, ylab = ylab, xlab = "Number of clusters k",
main = "Optimal number of clusters")
if (method == "silhouette")
p <- p + geom_vline(xintercept = which.max(v), linetype = 2,
color = linecolor)
return(p)
}
else if (method == "gap_stat") {
extra_args <- list(...)
gap_stat <- cluster::clusGap(x, FUNcluster, K.max = k.max,
B = nboot, verbose = verbose, ...)
if (!is.null(extra_args$maxSE))
maxSE <- extra_args$maxSE
else maxSE <- list(method = "firstSEmax", SE.factor = 1)
p <- fviz_gap_stat(gap_stat, linecolor = linecolor,
maxSE = maxSE)
return(p)
}
}
.viz_NbClust <- function (x, print.summary = TRUE, barfill = "steelblue",
barcolor = "steelblue")
{
best_nc <- x$Best.nc
if (any(class(best_nc) == "numeric") )
print(best_nc)
else if (any(class(best_nc) == "matrix") ) {
best_nc <- as.data.frame(t(best_nc), stringsAsFactors = TRUE)
best_nc$Number_clusters <- as.factor(best_nc$Number_clusters)
if (print.summary) {
ss <- summary(best_nc$Number_clusters)
cat("Among all indices: \n===================\n")
for (i in 1:length(ss)) {
cat("*", ss[i], "proposed ", names(ss)[i],
"as the best number of clusters\n")
}
cat("\nConclusion\n=========================\n")
cat("* According to the majority rule, the best number of clusters is ",
names(which.max(ss)), ".\n\n")
}
df <- data.frame(Number_clusters = names(ss), freq = ss,
stringsAsFactors = TRUE)
p <- ggpubr::ggbarplot(df, x = "Number_clusters",
y = "freq", fill = barfill, color = barcolor) +
labs(x = "Number of clusters k", y = "Frequency among all indices",
title = paste0("Optimal number of clusters - k = ",
names(which.max(ss))))
return(p)
}
}
fviz_nbclust(nbc_90)
fviz_nbclust(nbc_99)
# K is finalized to 3, Now we perform Different Clustering Methods
### Kmeans
set.seed(123)
km.res <- kmeans(y_pca_99, 3, nstart = 25)
# print(km.res)
fviz_cluster(km.res, data = y_pca_99,
palette = c("#2E9FDF", "#00AFBB", "#E7B800"),
geom = "point",
ellipse.type = "convex",
ggtheme = theme_bw()
)
### Gaussian mixture model (GMM)
library(mclust)
gmm = Mclust(pca_subsets_y[[1]], G = 10)
plot(pca_subsets_y[[1]],col=gmm$classification,cex=2,pch=1,lwd=2)
### Hierarchical Clustering
# Function to get within and between cluster sum of squares from hclust
get_sum_of_squares = function(data, cluster){
wss = list()
twss = vector()
tss = vector()
bss = vector()
cluster = as.matrix(cluster)
for(index in seq_len(ncol(cluster))){
ss = aggregate(data,
by=list(cluster[,index]),
function(x) sum(scale(x, scale=F)**2))
wss[[index]] = rowSums(ss[,-1])
twss[index] = sum(ss[,-1])
tss[index] = sum(scale(data, scale=F)**2)
bss[index] = tss[index] - twss[index]
}
ss.all = list(wss=wss, twss=twss, tss=tss, bss=bss)
return(ss.all)
}
#function for computing CH index
get_scores_for_hierarchical = function(data, kmax, twss, bss){
ch = numeric(length=kmax-1)
n = nrow(data)
for (k in 2:kmax) {
to = twss[k-1]
b = bss[k-1]
ch[k-1] = (b/(k-1))/(to/(n-k))
}
return(list(k=2:kmax,ch=ch))
}
# Get distances for all subsets of the PC space considered
dists = lapply(pca_subsets_y, dist)
hc.complete = lapply(dists, hclust, method="complete")
hc.single = lapply(dists, hclust, method="single")
hc.average = lapply(dists, hclust, method="average")
clusts = list(hc.complete, hc.single, hc.average)
# Function to plot CH and Total WSS for hclust across linkages, pc components kept, and values of K
plot.ch.wss = function(ch.list, wss.list, linkage){
par(mfrow=c(2,3), mai=c(.4,.5,.4,.2))
for(i in 1:3){
data = ch.list[[i]]
plot(data$k, data$ch, ylab="", xlab="", xaxt="n")
axis(1, labels=F)
abline(v = which.max(data$ch)+1, col=2)
if(i==1) title(ylab="CH Index", line=2, font.lab=2, cex.lab=1.2)
title(main=paste(pca_indices[i], "Components Kept"), line = .5)
}
for(i in 1:3){
data = wss.list[[i]]
plot(2:25, data$twss, ylab="", xlab="")
title(xlab = "K", font.lab=2, line = 2)
if(i==1) title(ylab="Total WSS", line=2, cex.lab=1.2, font.lab=2)
}
title(paste("CH Index and Total WSS For", linkage,
"Linkage Clustering Across PC Spaces"),
outer=T, line=-1)
}
methods = c("Complete", "Single", "Average")
for(method in seq_along(clusts)){
print(method)
cuts = lapply(clusts[[method]], function(x) cutree(x,k=2:20))
ss = mapply(get_sum_of_squares, cluster=cuts, data=pca_subsets_y, SIMPLIFY = F)
ch = lapply(ss, function(x) get_scores_for_hierarchical(data=y, kmax=20,
twss=x$twss, bss=x$bss))
pdf(paste0("ch_", methods[method], ".pdf"))
plot.ch.wss(ch, ss, linkage=methods[method])
dev.off()
}
### DBSCAN
kNNdistplot(pca_subsets_y[[3]], k=4)
abline(h=35, col="red")
set.seed(1234)
db = hdbscan(pca_subsets_y[[3]], minPts = 3)
kNNdistplot(pca_subsets_y[[3]], k=4)
abline(h=40, col="green")
set.seed(1234)
db = hdbscan(pca_subsets_y[[3]], minPts = 3)
### OPTICS