-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhpss_pure_python.py
116 lines (89 loc) · 3.12 KB
/
hpss_pure_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Spectrogram decomposition
=========================
.. autosummary::
:toctree: generated/
hpss
"""
import numpy as np
import librosa
import scipy.sparse
from scipy.ndimage import median_filter
def softmask(X, X_ref, power=1, split_zeros=False):
if X.shape != X_ref.shape:
raise ParameterError('Shape mismatch: {}!={}'.format(X.shape,
X_ref.shape))
if np.any(X < 0) or np.any(X_ref < 0):
raise ParameterError('X and X_ref must be non-negative')
if power <= 0:
raise ParameterError('power must be strictly positive')
# We're working with ints, cast to float.
dtype = X.dtype
if not np.issubdtype(dtype, np.floating):
dtype = np.float32
# Re-scale the input arrays relative to the larger value
Z = np.maximum(X, X_ref).astype(dtype)
bad_idx = (Z < np.finfo(dtype).tiny)
Z[bad_idx] = 1
# For finite power, compute the softmask
if np.isfinite(power):
mask = (X / Z)**power
ref_mask = (X_ref / Z)**power
good_idx = ~bad_idx
mask[good_idx] /= mask[good_idx] + ref_mask[good_idx]
# Wherever energy is below energy in both inputs, split the mask
if split_zeros:
mask[bad_idx] = 0.5
else:
mask[bad_idx] = 0.0
else:
# Otherwise, compute the hard mask
mask = X > X_ref
return mask
def magphase(D, power=1):
mag = np.abs(D)
mag **= power
phase = np.exp(1.j * np.angle(D))
return mag, phase
def hpss(S, kernel_size=31, power=2.0, mask=False, margin=1.0):
if np.iscomplexobj(S):
S, phase = magphase(S)
else:
phase = 1
if np.isscalar(kernel_size):
win_harm = kernel_size
win_perc = kernel_size
else:
win_harm = kernel_size[0]
win_perc = kernel_size[1]
if np.isscalar(margin):
margin_harm = margin
margin_perc = margin
else:
margin_harm = margin[0]
margin_perc = margin[1]
# margin minimum is 1.0
if margin_harm < 1 or margin_perc < 1:
raise ParameterError("Margins must be >= 1.0. "
"A typical range is between 1 and 10.")
# Compute median filters. Pre-allocation here preserves memory layout.
harm = np.empty_like(S)
harm[:] = median_filter(S, size=(1, win_harm), mode='reflect')
perc = np.empty_like(S)
perc[:] = median_filter(S, size=(win_perc, 1), mode='reflect')
split_zeros = (margin_harm == 1 and margin_perc == 1)
mask_harm = softmask(harm, perc * margin_harm,
power=power,
split_zeros=split_zeros)
mask_perc = softmask(perc, harm * margin_perc,
power=power,
split_zeros=split_zeros)
if mask:
return mask_harm, mask_perc
return ((S * mask_harm) * phase, (S * mask_perc) * phase)
if __name__ == "__main__":
y, sr = librosa.load(librosa.util.example_audio_file(), duration=15)
D = librosa.stft(y)
H, P = hpss(D)