This repo implements a sequence tagging model (bi-LSTM, word and character embeddings with CRF) and active learning.
Given a sequence, the task is to assign a tag to each token in the sequence. Active learning algorithm is used to select the most informative samples to be labelled at each round, hence reduce the annotation effort.
An example of a sequence tagging for code switching between German (DE) and Turkish (TR):
Ah DE
ja DE
Frauentausch DE
habe DE
ich DE
früher DE
immer DE
geguckt DE
:D OTHER
Rush NE.LANG3
Hour NE.LANG3
bakıyordum TR
gerade DE
;D OTHER
- concatenate final states of a bi-lstm on character embeddings to get a character-based representation of each word
- concatenate this representation to a standard word vector representation
- run a bi-lstm on each sentence to extract contextual representation of each word
- decode with a linear chain CRF
Using the score of the Viterbi sequence to decide most uncertain sequences
- Download the GloVe vectors with
make glove
Alternatively, you can download them manually here and update the glove_filename
entry in config.py
. You can also choose not to load pretrained word vectors by changing the entry use_pretrained
to False
in model/config.py
.
- Build the training data, train and evaluate the model with
make run
Here is the breakdown of the commands executed in make run
:
- [DO NOT MISS THIS STEP] Build vocab from the data and extract trimmed glove vectors according to the config in
model/config.py
.
python build_data.py
- Train the model with
python train.py
- Evaluate and interact with the model with
python evaluate.py
Data iterators and utils are in model/data_utils.py
and the model with training/test procedures is in model/ner_model.py
Training time on NVidia Tesla K80 is 110 seconds per epoch on CoNLL train set using characters embeddings and CRF.
The training data must be in the following format (identical to the CoNLL2003 dataset).
A default test file is provided to help you getting started.
John B-PER
lives O
in O
New B-LOC
York I-LOC
. O
This O
is O
another O
sentence
Once you have produced your data files, change the parameters in config.py
like
# dataset
dev_filename = "data/coNLL/eng/eng.testa.iob"
test_filename = "data/coNLL/eng/eng.testb.iob"
train_filename = "data/coNLL/eng/eng.train.iob"
https://github.com/guillaumegenthial/sequence_tagging/ Lample et al. Ma and Hovy