forked from mingyuliutw/UNIT
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
221 lines (201 loc) · 10.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from climatetranslation.unit.networks import MsImageDis, VAEGen
from climatetranslation.unit.utils import weights_init, get_model_list, get_scheduler
from climatetranslation.unit import ssim
from torch.autograd import Variable
import torch
import torch.nn as nn
import os
class UNIT_Trainer(nn.Module):
def __init__(self, hyperparameters):
super(UNIT_Trainer, self).__init__()
lr = hyperparameters['lr']
self.variables = [v for _, varlist in hyperparameters['level_vars'].items()
for v in varlist]
# Initiate the networks
self.gen_a = VAEGen(hyperparameters['input_dim_a'],
hyperparameters['land_mask_a'],
hyperparameters['gen']) # auto-encoder for domain a
self.gen_b = VAEGen(hyperparameters['input_dim_b'],
hyperparameters['land_mask_b'],
hyperparameters['gen']) # auto-encoder for domain b
self.dis_a = MsImageDis(hyperparameters['input_dim_a'],
hyperparameters['land_mask_a'],
hyperparameters['dis']) # discriminator for domain a
self.dis_b = MsImageDis(hyperparameters['input_dim_b'],
hyperparameters['land_mask_a'],
hyperparameters['dis']) # discriminator for domain b
# Setup the optimizers
beta1 = hyperparameters['beta1']
beta2 = hyperparameters['beta2']
dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters())
gen_params = list(self.gen_a.parameters()) + list(self.gen_b.parameters())
self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad],
lr=lr, betas=(beta1, beta2),
weight_decay=hyperparameters['weight_decay'])
self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad],
lr=lr, betas=(beta1, beta2),
weight_decay=hyperparameters['weight_decay'])
self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters)
self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters)
# Network weight initialization
self.apply(weights_init(hyperparameters['init']))
self.dis_a.apply(weights_init('gaussian'))
self.dis_b.apply(weights_init('gaussian'))
self.recon_func = hyperparameters['recon_loss_func']
def _get_recon_func(self, name):
if name=='mae':
def f(input, target):
return torch.mean(torch.abs(input - target), dim=(0,2,3))
elif name=='ssim':
def f(input, target):
window = ssim.create_window(window_size=11, channel=input.shape[1]).to(target.device)
return - torch.mean(ssim._ssim(input, target, window, window_size=11, channel=input.shape[1]), dim=(0,2,3))
elif name=='m4e':
def f(input, target):
d = 2
return torch.mean(torch.abs(input**d - target**d), dim=(0,2,3))**(1/d)
else:
raise ValueError("unrecognised loss function {}".format(name))
return f
def recon_criterion(self, input, target):
if isinstance(self.recon_func, list):
loss = torch.zeros(len(self.recon_func))
for i in range(len(self.recon_func)):
loss[i] = loss[i] + self._get_recon_func(self.recon_func[i])(input[:, i:i+1], target[:, i:i+1])
else:
loss = self._get_recon_func(self.recon_func)(input, target)
return loss
def forward(self, x_a, x_b):
self.eval()
h_a, _ = self.gen_a.encode(x_a)
h_b, _ = self.gen_b.encode(x_b)
x_ba = self.gen_a.decode(h_b)
x_ab = self.gen_b.decode(h_a)
self.train()
return x_ab, x_ba
def __compute_kl(self, mu):
# def _compute_kl(self, mu, sd):
# mu_2 = torch.pow(mu, 2)
# sd_2 = torch.pow(sd, 2)
# encoding_loss = (mu_2 + sd_2 - torch.log(sd_2)).sum() / mu_2.size(0)
# return encoding_loss
mu_2 = torch.pow(mu, 2)
encoding_loss = torch.mean(mu_2)
return encoding_loss
def gen_update(self, x_a, x_b, hyperparameters):
self.gen_opt.zero_grad()
# encode
h_a, n_a = self.gen_a.encode(x_a)
h_b, n_b = self.gen_b.encode(x_b)
# decode (within domain)
x_a_recon = self.gen_a.decode(h_a + n_a)
x_b_recon = self.gen_b.decode(h_b + n_b)
# decode (cross domain)
x_ba = self.gen_a.decode(h_b + n_b)
x_ab = self.gen_b.decode(h_a + n_a)
# encode again
h_b_recon, n_b_recon = self.gen_a.encode(x_ba)
h_a_recon, n_a_recon = self.gen_b.encode(x_ab)
# decode again (if needed)
x_aba = self.gen_a.decode(h_a_recon + n_a_recon) if hyperparameters['recon_x_cyc_w'] > 0 else None
x_bab = self.gen_b.decode(h_b_recon + n_b_recon) if hyperparameters['recon_x_cyc_w'] > 0 else None
def set_recon_loss(name_root, recon_loss):
for i,v in enumerate(self.variables):
setattr(self, f"{name_root}-{v}", recon_loss[i])
relative_weights = torch.tensor(hyperparameters['recon_x_multi']).to(recon_loss.device)
relative_weights = relative_weights/relative_weights.sum()
setattr(self, name_root, torch.sum(recon_loss*relative_weights))
# reconstruction loss
set_recon_loss('loss_gen_recon_x_a', self.recon_criterion(x_a_recon, x_a))
set_recon_loss('loss_gen_recon_x_b', self.recon_criterion(x_b_recon, x_b))
set_recon_loss('loss_gen_cyc_x_a', self.recon_criterion(x_aba, x_a))
set_recon_loss('loss_gen_cyc_x_b', self.recon_criterion(x_bab, x_b))
# kl loss
self.loss_gen_recon_kl_cyc_aba = self.__compute_kl(h_a_recon)
self.loss_gen_recon_kl_cyc_bab = self.__compute_kl(h_b_recon)
self.loss_gen_recon_kl_a = self.__compute_kl(h_a)
self.loss_gen_recon_kl_b = self.__compute_kl(h_b)
# GAN loss
self.loss_gen_adv_a = self.dis_a.calc_gen_loss(x_ba)
self.loss_gen_adv_b = self.dis_b.calc_gen_loss(x_ab)
# total loss
self.loss_gen_total = (
hyperparameters['gan_w'] * self.loss_gen_adv_a +
hyperparameters['gan_w'] * self.loss_gen_adv_b +
hyperparameters['recon_x_w'] * self.loss_gen_recon_x_a +
hyperparameters['recon_kl_w'] * self.loss_gen_recon_kl_a +
hyperparameters['recon_x_w'] * self.loss_gen_recon_x_b +
hyperparameters['recon_kl_w'] * self.loss_gen_recon_kl_b +
hyperparameters['recon_x_cyc_w'] * self.loss_gen_cyc_x_a +
hyperparameters['recon_kl_cyc_w'] * self.loss_gen_recon_kl_cyc_aba +
hyperparameters['recon_x_cyc_w'] * self.loss_gen_cyc_x_b +
hyperparameters['recon_kl_cyc_w'] * self.loss_gen_recon_kl_cyc_bab
)
self.loss_gen_total.backward()
self.gen_opt.step()
def sample(self, x_a, x_b):
self.eval()
x_a_recon, x_b_recon, x_ba, x_ab = [], [], [], []
for i in range(x_a.size(0)):
h_a, _ = self.gen_a.encode(x_a[i].unsqueeze(0))
h_b, _ = self.gen_b.encode(x_b[i].unsqueeze(0))
x_a_recon.append(self.gen_a.decode(h_a))
x_b_recon.append(self.gen_b.decode(h_b))
x_ba.append(self.gen_a.decode(h_b))
x_ab.append(self.gen_b.decode(h_a))
x_a_recon, x_b_recon = torch.cat(x_a_recon), torch.cat(x_b_recon)
x_ba = torch.cat(x_ba)
x_ab = torch.cat(x_ab)
self.train()
return x_a, x_a_recon, x_ab, x_b, x_b_recon, x_ba
def dis_update(self, x_a, x_b, hyperparameters):
self.dis_opt.zero_grad()
# encode
h_a, n_a = self.gen_a.encode(x_a)
h_b, n_b = self.gen_b.encode(x_b)
# decode (cross domain)
x_ba = self.gen_a.decode(h_b + n_b)
x_ab = self.gen_b.decode(h_a + n_a)
# D loss
self.loss_dis_a = self.dis_a.calc_dis_loss(x_ba.detach(), x_a)
self.loss_dis_b = self.dis_b.calc_dis_loss(x_ab.detach(), x_b)
self.loss_dis_total = hyperparameters['gan_w'] * (self.loss_dis_a + self.loss_dis_b)
self.loss_dis_total.backward()
self.dis_opt.step()
def update_learning_rate(self):
if self.dis_scheduler is not None:
self.dis_scheduler.step()
if self.gen_scheduler is not None:
self.gen_scheduler.step()
def resume(self, checkpoint_dir, hyperparameters):
# Load generators
last_model_name = get_model_list(checkpoint_dir, "gen")
state_dict = torch.load(last_model_name)
self.gen_a.load_state_dict(state_dict['a'])
self.gen_b.load_state_dict(state_dict['b'])
iterations = int(last_model_name[-11:-3])
# Load discriminators
last_model_name = get_model_list(checkpoint_dir, "dis")
state_dict = torch.load(last_model_name)
self.dis_a.load_state_dict(state_dict['a'])
self.dis_b.load_state_dict(state_dict['b'])
# Load optimizers
state_dict = torch.load(os.path.join(checkpoint_dir, 'optimizer.pt'))
self.dis_opt.load_state_dict(state_dict['dis'])
self.gen_opt.load_state_dict(state_dict['gen'])
# Reinitilize schedulers
self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters, iterations)
self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters, iterations)
print('Resume from iteration %d' % iterations)
return iterations
def save(self, snapshot_dir, iterations):
# Save generators, discriminators, and optimizers
gen_name = os.path.join(snapshot_dir, 'gen_%08d.pt' % (iterations + 1))
dis_name = os.path.join(snapshot_dir, 'dis_%08d.pt' % (iterations + 1))
opt_name = os.path.join(snapshot_dir, 'optimizer.pt')
torch.save({'a': self.gen_a.state_dict(), 'b': self.gen_b.state_dict()}, gen_name)
torch.save({'a': self.dis_a.state_dict(), 'b': self.dis_b.state_dict()}, dis_name)
torch.save({'gen': self.gen_opt.state_dict(), 'dis': self.dis_opt.state_dict()}, opt_name)