-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
983 lines (811 loc) · 32.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
import base64
import os
import pickle
import subprocess
import time
from datetime import datetime, timedelta
from io import BytesIO
from typing import Union
import cheetah
import gym
import matplotlib.pyplot as plt
import numpy as np
import wandb
import yaml
from gym import spaces
from gym.wrappers import TimeLimit
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.env_util import is_wrapped, unwrap_wrapper
from tqdm import tqdm
from backend import CheetahBackend
try:
import pydoocs # type: ignore
except ModuleNotFoundError:
import dummypydoocs as pydoocs
def load_config(path: str) -> dict:
"""
Load a training setup config file to a config dictionary. The config file must be a
`.yaml` file. The `path` argument to this function should be given without the file
extension.
"""
with open(f"{path}.yaml", "r") as f:
data = yaml.load(f.read(), Loader=yaml.Loader)
return data
def plot_beam_history(ax, observations, before_reset=None):
mu_x = np.array([obs["beam"][0] for obs in observations])
sigma_x = np.array([obs["beam"][1] for obs in observations])
mu_y = np.array([obs["beam"][2] for obs in observations])
sigma_y = np.array([obs["beam"][3] for obs in observations])
if before_reset is not None:
mu_x = np.insert(mu_x, 0, before_reset[0])
sigma_x = np.insert(sigma_x, 0, before_reset[1])
mu_y = np.insert(mu_y, 0, before_reset[2])
sigma_y = np.insert(sigma_y, 0, before_reset[3])
target_beam = observations[0]["target"]
start = 0 if before_reset is None else -1
steps = np.arange(start, len(observations))
ax.set_title("Beam Parameters")
ax.set_xlim([start, len(observations) + 1])
ax.set_xlabel("Step")
ax.set_ylabel("(mm)")
ax.plot(steps, mu_x * 1e3, label=r"$\mu_x$", c="tab:blue")
ax.plot(steps, [target_beam[0] * 1e3] * len(steps), ls="--", c="tab:blue")
ax.plot(steps, sigma_x * 1e3, label=r"$\sigma_x$", c="tab:orange")
ax.plot(steps, [target_beam[1] * 1e3] * len(steps), ls="--", c="tab:orange")
ax.plot(steps, mu_y * 1e3, label=r"$\mu_y$", c="tab:green")
ax.plot(steps, [target_beam[2] * 1e3] * len(steps), ls="--", c="tab:green")
ax.plot(steps, sigma_y * 1e3, label=r"$\sigma_y$", c="tab:red")
ax.plot(steps, [target_beam[3] * 1e3] * len(steps), ls="--", c="tab:red")
ax.legend()
ax.grid(True)
def plot_screen_image(ax, img, screen_resolution, pixel_size, title="Beam Image"):
screen_size = screen_resolution * pixel_size
ax.set_title(title)
ax.set_xlabel("(mm)")
ax.set_ylabel("(mm)")
ax.imshow(
img,
vmin=0,
aspect="equal",
interpolation="none",
extent=(
-screen_size[0] / 2 * 1e3,
screen_size[0] / 2 * 1e3,
-screen_size[1] / 2 * 1e3,
screen_size[1] / 2 * 1e3,
),
)
def plot_quadrupole_history(ax, observations, before_reset=None):
areamqzm1 = [obs["magnets"][0] for obs in observations]
areamqzm2 = [obs["magnets"][1] for obs in observations]
areamqzm3 = [obs["magnets"][3] for obs in observations]
if before_reset is not None:
areamqzm1 = [before_reset[0]] + areamqzm1
areamqzm2 = [before_reset[1]] + areamqzm2
areamqzm3 = [before_reset[3]] + areamqzm3
start = 0 if before_reset is None else -1
steps = np.arange(start, len(observations))
ax.set_title("Quadrupoles")
ax.set_xlim([start, len(observations) + 1])
ax.set_xlabel("Step")
ax.set_ylabel("Strength (1/m^2)")
ax.plot(steps, areamqzm1, label="AREAMQZM1")
ax.plot(steps, areamqzm2, label="AREAMQZM2")
ax.plot(steps, areamqzm3, label="AREAMQZM3")
ax.legend()
ax.grid(True)
def plot_steerer_history(ax, observations, before_reset=None):
areamcvm1 = np.array([obs["magnets"][2] for obs in observations])
areamchm2 = np.array([obs["magnets"][4] for obs in observations])
if before_reset is not None:
areamcvm1 = np.insert(areamcvm1, 0, before_reset[2])
areamchm2 = np.insert(areamchm2, 0, before_reset[4])
start = 0 if before_reset is None else -1
steps = np.arange(start, len(observations))
ax.set_title("Steerers")
ax.set_xlabel("Step")
ax.set_ylabel("Kick (mrad)")
ax.set_xlim([start, len(observations) + 1])
ax.plot(steps, areamcvm1 * 1e3, label="AREAMCVM1")
ax.plot(steps, areamchm2 * 1e3, label="AREAMCHM2")
ax.legend()
ax.grid(True)
def remove_if_exists(path):
try:
os.remove(path)
return True
except OSError:
return False
def save_config(data: dict, path: str) -> None:
"""
Save a training setup config to a `.yaml` file. The `path` argument to this function
should be given without the file extension.
"""
with open(f"{path}.yaml", "w") as f:
yaml.dump(data, f)
def send_to_elog(author, title, severity, text, elog, image=None):
"""Send information to a supplied electronic logbook."""
# The DOOCS elog expects an XML string in a particular format. This string
# is beeing generated in the following as an initial list of strings.
succeded = True # indicator for a completely successful job
# list beginning
elogXMLStringList = ['<?xml version="1.0" encoding="ISO-8859-1"?>', "<entry>"]
# author information
elogXMLStringList.append("<author>")
elogXMLStringList.append(author)
elogXMLStringList.append("</author>")
# title information
elogXMLStringList.append("<title>")
elogXMLStringList.append(title)
elogXMLStringList.append("</title>")
# severity information
elogXMLStringList.append("<severity>")
elogXMLStringList.append(severity)
elogXMLStringList.append("</severity>")
# text information
elogXMLStringList.append("<text>")
elogXMLStringList.append(text)
elogXMLStringList.append("</text>")
# image information
if image:
try:
encodedImage = base64.b64encode(image)
elogXMLStringList.append("<image>")
elogXMLStringList.append(encodedImage.decode())
elogXMLStringList.append("</image>")
except (
Exception
) as e: # make elog entry anyway, but return error (succeded = False)
succeded = False
print(f"When appending image, encounterd exception {e}")
# list end
elogXMLStringList.append("</entry>")
# join list to the final string
elogXMLString = "\n".join(elogXMLStringList)
# open printer process
try:
lpr = subprocess.Popen(
["/usr/bin/lp", "-o", "raw", "-d", elog],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
)
# send printer job
lpr.communicate(elogXMLString.encode("utf-8"))
except Exception as e:
print(f"When sending log entry to printer process, encounterd exception {e}")
succeded = False
return succeded
class ARESEAeLog(gym.Wrapper):
"""
Wrapper to send a summary of optimsations in the ARES Experimental Area
to the ARES eLog.
"""
def __init__(self, env, model_name):
super().__init__(env)
self.model_name = model_name
self.has_reset_before = False
def reset(self):
if self.has_reset_before:
self.t_end = datetime.now()
self.report_optimization_to_elog()
else:
self.has_reset_before = True
observation = self.env.reset()
# TODO Get the below from info?
self.screen_image_before = self.env.backend.get_screen_image()
self.observations = [observation]
self.rewards = []
self.infos = []
self.actions = []
self.t_start = datetime.now()
self.t_end = None
self.steps_taken = 0
return observation
def step(self, action):
observation, reward, done, info = self.env.step(action)
self.observations.append(observation)
self.rewards.append(reward)
self.infos.append(info)
self.actions.append(action)
self.steps_taken += 1
return observation, reward, done, info
def close(self):
super().close()
if self.has_reset_before:
self.t_end = datetime.now()
self.report_optimization_to_elog()
def report_optimization_to_elog(self):
"""
Send a summary report of the optimisation in the ARES EA environment to the ARES
eLog.
"""
msg = self.create_text_message()
img = self.create_plot_jpg()
title = "Beam Optimisation on AREABSCR1 using " + (
"Bayesian Optimisation"
if self.model_name == "Bayesian Optimisation"
else "Reinforcement Learning"
)
print(f"{title = }")
print(f"{msg = }")
send_to_elog(
elog="areslog",
author="Autonomous ARES",
title=title,
severity="NONE",
text=msg,
image=img,
)
def create_text_message(self):
"""Create text message summarising the optimisation."""
beam_before = self.infos[0][
"beam_before_reset"
] # TODO this may become an issue when magnet_init_values is None
beam_after = self.observations[-1]["beam"]
target_beam = self.observations[0]["target"]
final_deltas = beam_after - target_beam
final_mae = np.mean(np.abs(final_deltas))
target_threshold = np.array(
[
self.env.target_mu_x_threshold,
self.env.target_sigma_x_threshold,
self.env.target_mu_y_threshold,
self.env.target_sigma_y_threshold,
]
)
final_magnets = self.observations[-1]["magnets"]
steps_taken = len(self.observations) - 1
success = np.abs(beam_after - target_beam) < target_threshold
algorithm = (
"Bayesian Optimisation"
if self.model_name == "Bayesian Optimisation"
else "Reinforcement Learning agent"
)
return (
f"{algorithm} optimised beam on AREABSCR1\n"
"\n"
f"Agent: {self.model_name}\n"
f"Start time: {self.t_start}\n"
f"Time taken: {self.t_end - self.t_start}\n"
f"No. of steps: {steps_taken}\n"
"\n"
"Beam before:\n"
f" mu_x = {beam_before[0] * 1e3: 5.4f} mm\n"
f" sigma_x = {beam_before[1] * 1e3: 5.4f} mm\n"
f" mu_y = {beam_before[2] * 1e3: 5.4f} mm\n"
f" sigma_y = {beam_before[3] * 1e3: 5.4f} mm\n"
"\n"
"Beam after:\n"
f" mu_x = {beam_after[0] * 1e3: 5.4f} mm\n"
f" sigma_x = {beam_after[1] * 1e3: 5.4f} mm\n"
f" mu_y = {beam_after[2] * 1e3: 5.4f} mm\n"
f" sigma_y = {beam_after[3] * 1e3: 5.4f} mm\n"
"\n"
"Target beam:\n"
f" mu_x = {target_beam[0] * 1e3: 5.4f} mm (e = "
f"{target_threshold[0] * 1e3:5.4f} mm) {';)' if success[0] else ':/'}\n"
f" sigma_x = {target_beam[1] * 1e3: 5.4f} mm (e = "
f"{target_threshold[1] * 1e3:5.4f} mm) {';)' if success[1] else ':/'}\n"
f" mu_y = {target_beam[2] * 1e3: 5.4f} mm (e = "
f"{target_threshold[2] * 1e3:5.4f} mm) {';)' if success[2] else ':/'}\n"
f" sigma_y = {target_beam[3] * 1e3: 5.4f} mm (e = "
f"{target_threshold[3] * 1e3:5.4f} mm) {';)' if success[3] else ':/'}\n"
"\n"
"Result:\n"
f" |delta_mu_x| = {abs(final_deltas[0]) * 1e3: 5.4f} mm\n"
f" |delta_sigma_x| = {abs(final_deltas[1]) * 1e3: 5.4f} mm\n"
f" |delta_mu_y| = {abs(final_deltas[2]) * 1e3: 5.4f} mm\n"
f" |delta_sigma_y| = {abs(final_deltas[3]) * 1e3: 5.4f} mm\n"
"\n"
f" MAE = {final_mae * 1e3: 5.4f} mm\n\nFinal magnet settings:\n"
f" AREAMQZM1 strength = {final_magnets[0]: 8.4f} 1/m^2\n"
f" AREAMQZM2 strength = {final_magnets[1]: 8.4f} 1/m^2\n"
f" AREAMCVM1 kick = {final_magnets[2] * 1e3: 8.4f} mrad\n"
f" AREAMQZM3 strength = {final_magnets[3]: 8.4f} 1/m^2\n"
f" AREAMCHM1 kick = {final_magnets[4] * 1e3: 8.4f} mrad"
)
def create_plot_jpg(self):
"""Create plot overview of the optimisation and return it as jpg bytes."""
fig, axs = plt.subplots(1, 5, figsize=(30, 4))
plot_quadrupole_history(
axs[0],
self.observations,
before_reset=self.infos[0]["magnets_before_reset"],
)
plot_steerer_history(
axs[1],
self.observations,
before_reset=self.infos[0]["magnets_before_reset"],
)
plot_beam_history(
axs[2], self.observations, before_reset=self.infos[0]["beam_before_reset"]
)
plot_screen_image(
axs[3],
self.infos[0][
"screen_before_reset"
], # TODO this may become an issue when magnet_init_values is None
screen_resolution=self.infos[0]["screen_resolution"],
pixel_size=self.infos[0]["pixel_size"],
title="Beam at Reset (Background Removed)",
)
plot_screen_image(
axs[4],
self.infos[-1]["screen_image"],
screen_resolution=self.infos[-1]["screen_resolution"],
pixel_size=self.infos[-1]["pixel_size"],
title="Beam After (Background Removed)",
)
fig.tight_layout()
buf = BytesIO()
fig.savefig(buf, dpi=300, format="jpg")
buf.seek(0)
img = bytes(buf.read())
return img
class CheckpointCallback(BaseCallback):
def __init__(
self,
save_freq,
save_path,
name_prefix="rl_model",
save_env=False,
env_name_prefix="vec_normalize",
save_replay_buffer=False,
replay_buffer_name_prefix="replay_buffer",
delete_old_replay_buffers=True,
verbose=0,
):
super(CheckpointCallback, self).__init__(verbose)
self.save_freq = save_freq
self.save_path = save_path
self.name_prefix = name_prefix
self.save_env = save_env
self.env_name_prefix = env_name_prefix
self.save_replay_buffer = save_replay_buffer
self.replay_buffer_name_prefix = replay_buffer_name_prefix
self.delete_old_replay_buffers = delete_old_replay_buffers
def _init_callback(self):
# Create folder if needed
if self.save_path is not None:
os.makedirs(self.save_path, exist_ok=True)
def _on_step(self) -> bool:
if self.n_calls % self.save_freq == 0:
# Save model
path = os.path.join(
self.save_path, f"{self.name_prefix}_{self.num_timesteps}_steps"
)
self.model.save(path)
if self.verbose > 1:
print(f"Saving model checkpoint to {path}")
# Save env (VecNormalize wrapper)
if self.save_env:
path = os.path.join(
self.save_path,
f"{self.env_name_prefix}_{self.num_timesteps}_steps.pkl",
)
self.training_env.save(path)
if self.verbose > 1:
print(f"Saving environment to {path[:-4]}")
# Save replay buffer
if self.save_replay_buffer:
path = os.path.join(
self.save_path,
f"{self.replay_buffer_name_prefix}_{self.num_timesteps}_steps",
)
self.model.save_replay_buffer(path)
if self.verbose > 1:
print(f"Saving replay buffer to {path}")
if self.delete_old_replay_buffers and hasattr(self, "last_saved_path"):
remove_if_exists(self.last_saved_path + ".pkl")
if self.verbose > 1:
print(f"Removing old replay buffer at {self.last_saved_path}")
self.last_saved_path = path
return True
class FilterAction(gym.ActionWrapper):
def __init__(self, env, filter_indicies, replace="random"):
super().__init__(env)
self.filter_indicies = filter_indicies
self.replace = replace
self.action_space = spaces.Box(
low=env.action_space.low[filter_indicies],
high=env.action_space.high[filter_indicies],
shape=env.action_space.low[filter_indicies].shape,
dtype=env.action_space.dtype,
)
def action(self, action):
if self.replace == "random":
unfiltered = self.env.action_space.sample()
else:
unfiltered = np.full(
self.env.action_space.shape,
self.replace,
dtype=self.env.action_space.dtype,
)
unfiltered[self.filter_indicies] = action
return unfiltered
class NotVecNormalize(gym.Wrapper):
"""
Normal Gym wrapper that replicates the functionality of Stable Baselines3's
VecNormalize wrapper for non VecEnvs (i.e. `gym.Env`) in production.
"""
def __init__(self, env, path):
super().__init__(env)
with open(path, "rb") as file_handler:
self.vec_normalize = pickle.load(file_handler)
def reset(self):
observation = self.env.reset()
return self.vec_normalize.normalize_obs(observation)
def step(self, action):
observation, reward, done, info = self.env.step(action)
observation = self.vec_normalize.normalize_obs(observation)
reward = self.vec_normalize.normalize_reward(reward)
return observation, reward, done, info
class PolishedDonkeyCompatibility(gym.Wrapper):
def __init__(self, env):
super().__init__(env)
self.observation_space = spaces.Box(
low=np.array(
[
super().observation_space.low[4],
super().observation_space.low[5],
super().observation_space.low[7],
super().observation_space.low[6],
super().observation_space.low[8],
super().observation_space.low[9],
super().observation_space.low[11],
super().observation_space.low[10],
super().observation_space.low[12],
super().observation_space.low[0],
super().observation_space.low[2],
super().observation_space.low[1],
super().observation_space.low[3],
]
),
high=np.array(
[
super().observation_space.high[4],
super().observation_space.high[5],
super().observation_space.high[7],
super().observation_space.high[6],
super().observation_space.high[8],
super().observation_space.high[9],
super().observation_space.high[11],
super().observation_space.high[10],
super().observation_space.high[12],
super().observation_space.high[0],
super().observation_space.high[2],
super().observation_space.high[1],
super().observation_space.high[3],
]
),
)
self.action_space = spaces.Box(
low=np.array([-30, -30, -30, -3e-3, -6e-3], dtype=np.float32) * 0.1,
high=np.array([30, 30, 30, 3e-3, 6e-3], dtype=np.float32) * 0.1,
)
def reset(self):
return self.observation(super().reset())
def step(self, action):
observation, reward, done, info = super().step(self.action(action))
return self.observation(observation), reward, done, info
def observation(self, observation):
return np.array(
[
observation[4],
observation[5],
observation[7],
observation[6],
observation[8],
observation[9],
observation[11],
observation[10],
observation[12],
observation[0],
observation[2],
observation[1],
observation[3],
]
)
def action(self, action):
return np.array(
[
action[0],
action[1],
action[3],
action[2],
action[4],
]
)
class RecordEpisode(gym.Wrapper):
"""
Wrapper for recording epsiode data such as observations, rewards, infos and actions.
Pass a `save_dir` other than `None` to save the recorded data to pickle files.
"""
def __init__(self, env, save_dir=None, name_prefix="recorded_episode"):
super().__init__(env)
self.save_dir = save_dir
if self.save_dir is not None:
self.save_dir = os.path.abspath(save_dir)
if os.path.isdir(self.save_dir):
print(
f"Overwriting existing data recordings at {self.save_dir} folder."
" Specify a different `save_dir` for the `RecordEpisode` wrapper"
" if this is not desired."
)
os.makedirs(self.save_dir, exist_ok=True)
self.name_prefix = name_prefix
self.n_episodes_recorded = 0
def reset(self):
self.t_end = datetime.now()
if self.save_dir is not None and self.n_episodes_recorded > 0:
self.save_to_file()
if self.n_episodes_recorded > 0:
self.previous_observations = self.observations
self.previous_rewards = self.rewards
self.previous_infos = self.infos
self.previous_actions = self.actions
self.previous_t_start = self.t_start
self.previous_t_end = self.t_end
self.previous_steps_taken = self.steps_taken
self.n_episodes_recorded += 1
observation = self.env.reset()
self.observations = [observation]
self.rewards = []
self.infos = []
self.actions = []
self.t_start = datetime.now()
self.t_end = None
self.steps_taken = 0
self.step_start_times = []
self.step_end_times = []
self.has_previously_run = True
return observation
def step(self, action):
self.step_start_times.append(datetime.now())
observation, reward, done, info = self.env.step(action)
self.observations.append(observation)
self.rewards.append(reward)
self.infos.append(info)
self.actions.append(action)
self.steps_taken += 1
self.step_end_times.append(datetime.now())
return observation, reward, done, info
def close(self):
super().close()
self.t_end = datetime.now()
if self.save_dir is not None and self.n_episodes_recorded > 0:
self.save_to_file()
def save_to_file(self):
"""Save the data from the current episodes to a `.pkl` file."""
filename = f"{self.name_prefix}_{self.n_episodes_recorded}.pkl"
path = os.path.join(self.save_dir, filename)
d = {
"observations": self.observations,
"rewards": self.rewards,
"infos": self.infos,
"actions": self.actions,
"t_start": self.t_start,
"t_end": self.t_end,
"steps_taken": self.steps_taken,
"step_start_times": self.step_start_times,
"step_end_times": self.step_end_times,
}
with open(path, "wb") as f:
pickle.dump(d, f)
class SLURMRescheduleCallback(BaseCallback):
def __init__(self, reserved_time, safety=timedelta(minutes=1), verbose=0):
super().__init__(verbose)
self.allowed_time = reserved_time - safety
self.t_start = datetime.now()
self.t_last = self.t_start
def _on_step(self):
t_now = datetime.now()
passed_time = t_now - self.t_start
dt = t_now - self.t_last
self.t_last = t_now
if passed_time + dt > self.allowed_time:
os.system(
"sbatch"
f" --export=ALL,WANDB_RESUME=allow,WANDB_RUN_ID={wandb.run.id} td3.sh"
)
if self.verbose > 1:
print("Scheduling new batch job to continue training")
return False
else:
if self.verbose > 1:
print(
f"Continue running with this SLURM job (passed={passed_time} /"
f" allowed={self.allowed_time} / dt={dt})"
)
return True
class TQDMWrapper(gym.Wrapper):
"""
Uses TQDM to show a progress bar for every step taken by the environment. If the
passed `env` is already wrapper in a `TimeLimit` wrapper, this wrapper will use that
as the maximum number of steps for the progress bar.
"""
def reset(self):
if hasattr(self, "pbar"):
self.pbar.close()
obs = super().reset()
if is_wrapped(self.env, TimeLimit):
time_limit = unwrap_wrapper(self.env, TimeLimit)
self.pbar = tqdm(total=time_limit._max_episode_steps)
else:
self.pbar = tqdm()
return obs
def step(self, action):
obs, reward, done, info = super().step(action)
self.pbar.update()
return obs, reward, done, info
def close(self):
if hasattr(self, "pbar"):
self.pbar.close()
super().close()
class SetUpstreamSteererAtStep(gym.Wrapper):
"""Before the `n`-th step change the value of an upstream `steerer`."""
def __init__(
self, env: gym.Env, steps_to_trigger: int, steerer: str, mrad: float
) -> None:
super().__init__(env)
assert steerer in [
"ARLIMCHM1",
"ARLIMCVM1",
"ARLIMCHM2",
"ARLIMCVM2",
"ARLIMSOG1+-",
], f"{steerer} is not one of the four upstream steerers"
self.steps_to_trigger = steps_to_trigger
self.steerer = steerer
self.mrad = mrad
def reset(self) -> Union[np.ndarray, dict]:
self.steps_taken = 0
self.is_steerer_set = False
# Reset steerer to default
# pydoocs.write(
# f"SINBAD.MAGNETS/MAGNET.ML/{self.steerer}/KICK_MRAD.SP", 0.8196
# )
pydoocs.write("SINBAD.MAGNETS/MAGNET.ML/ARLIMSOG1+-/FIELD.SP", -0.1468)
# Wait until magnets have reached their setpoints
time.sleep(3.0) # Wait for magnets to realise they received a command
is_busy = True
is_ps_on = True
while is_busy or not is_ps_on:
is_busy = pydoocs.read("SINBAD.MAGNETS/MAGNET.ML/ARLIMSOG1+-/BUSY")["data"]
is_ps_on = pydoocs.read("SINBAD.MAGNETS/MAGNET.ML/ARLIMSOG1+-/PS_ON")[
"data"
]
return super().reset()
def step(self, action: np.ndarray) -> tuple:
self.steps_taken += 1
if self.steps_taken > self.steps_to_trigger and not self.is_steerer_set:
print("Triggering disturbance")
self.set_steerer()
self.is_steerer_set = True
return super().step(action)
def set_steerer(self) -> None:
pydoocs.write("SINBAD.MAGNETS/MAGNET.ML/ARLIMSOG1+-/FIELD.SP", self.mrad)
# Wait until magnets have reached their setpoints
time.sleep(3.0) # Wait for magnets to realise they received a command
is_busy = True
is_ps_on = True
while is_busy or not is_ps_on:
is_busy = pydoocs.read("SINBAD.MAGNETS/MAGNET.ML/ARLIMSOG1+-/BUSY")["data"]
is_ps_on = pydoocs.read("SINBAD.MAGNETS/MAGNET.ML/ARLIMSOG1+-/PS_ON")[
"data"
]
class SetIncomingBeamAtStep(gym.Wrapper):
"""Before the `n`-th step change the incoming beam to `incoming_beam_parameters`."""
def __init__(
self, env: gym.Env, steps_to_trigger: int, incoming_beam_parameters: np.ndarray
) -> None:
super().__init__(env)
assert isinstance(env.unwrapped.backend, CheetahBackend)
self.steps_to_trigger = steps_to_trigger
self.incoming_beam_parameters = incoming_beam_parameters
def reset(self) -> Union[np.ndarray, dict]:
self.steps_taken = 0
self.has_incoming_beam_changed = False
return super().reset()
def step(self, action: np.ndarray) -> tuple:
self.steps_taken += 1
if (
self.steps_taken > self.steps_to_trigger
and not self.has_incoming_beam_changed
):
self.change_incoming_beam()
self.has_incoming_beam_changed = True
return super().step(action)
def change_incoming_beam(self) -> None:
self.env.unwrapped.backend.incoming = cheetah.ParameterBeam.from_parameters(
energy=self.incoming_beam_parameters[0],
mu_x=self.incoming_beam_parameters[1],
mu_xp=self.incoming_beam_parameters[2],
mu_y=self.incoming_beam_parameters[3],
mu_yp=self.incoming_beam_parameters[4],
sigma_x=self.incoming_beam_parameters[5],
sigma_xp=self.incoming_beam_parameters[6],
sigma_y=self.incoming_beam_parameters[7],
sigma_yp=self.incoming_beam_parameters[8],
sigma_s=self.incoming_beam_parameters[9],
sigma_p=self.incoming_beam_parameters[10],
)
class AnimateIncomingBeam(gym.Wrapper):
"""Before the `n`-th step change the incoming beam to `incoming_beam_parameters`."""
def __init__(
self, env: gym.Env, over_n_steps: int, to_beam_parameters: np.ndarray
) -> None:
super().__init__(env)
assert isinstance(env.unwrapped.backend, CheetahBackend)
self.over_n_steps = over_n_steps
self.to_beam_parameters = to_beam_parameters
def reset(self) -> Union[np.ndarray, dict]:
obs = super().reset()
self.steps_taken = 0
initial_beam = self.env.unwrapped.backend.incoming
self.initial_beam_parameters = np.array(
[
initial_beam.energy,
initial_beam.mu_x,
initial_beam.mu_xp,
initial_beam.mu_y,
initial_beam.mu_yp,
initial_beam.sigma_x,
initial_beam.sigma_xp,
initial_beam.sigma_y,
initial_beam.sigma_yp,
initial_beam.sigma_s,
initial_beam.sigma_p,
]
)
return obs
def step(self, action: np.ndarray) -> tuple:
self.steps_taken += 1
new_beam_parameters = (
self.initial_beam_parameters
+ (self.initial_beam_parameters - self.to_beam_parameters)
* self.steps_taken
/ self.over_n_steps
)
self.set_incoming_beam(new_beam_parameters)
return super().step(action)
def set_incoming_beam(self, new_beam_parameters: np.ndarray) -> None:
self.env.unwrapped.backend.incoming = cheetah.ParameterBeam.from_parameters(
energy=new_beam_parameters[0],
mu_x=new_beam_parameters[1],
mu_xp=new_beam_parameters[2],
mu_y=new_beam_parameters[3],
mu_yp=new_beam_parameters[4],
sigma_x=new_beam_parameters[5],
sigma_xp=new_beam_parameters[6],
sigma_y=new_beam_parameters[7],
sigma_yp=new_beam_parameters[8],
sigma_s=new_beam_parameters[9],
sigma_p=new_beam_parameters[10],
)
class FailQ3(gym.Wrapper):
"""Turn magnet Q3 off as if it had failed."""
def __init__(self, env: gym.Env, at_step: int = 0) -> None:
super().__init__(env)
assert isinstance(env.unwrapped.backend, CheetahBackend)
self.at_step = at_step
def reset(self) -> Union[np.ndarray, dict]:
obs = super().reset()
self.steps_taken = 0
self.has_magnet_failed = False
if self.at_step == 0:
magnet_values = self.env.unwrapped.backend.get_magnets()
magnet_values[3] = 0.0
self.env.unwrapped.backend.set_magnets(magnet_values)
self.has_magnet_failed = True
obs["magnets"][3] = 0.0
return obs
def step(self, action: np.ndarray) -> tuple:
self.steps_taken += 1
if self.steps_taken > self.at_step:
magnet_values = self.env.unwrapped.backend.get_magnets()
magnet_values[3] = 0.0
self.env.unwrapped.backend.set_magnets(magnet_values)
self.has_magnet_failed = True
action[3] = 0.0
return super().step(action)